Robust bounds on optimal tax progressivity

Anmol Bhandari* Jaroslav Borovicka® Yuki Yao?

* University of Minnesota and NBER
T New York University and NBER
¥ University of Kent

June 18, 2025

Preliminary draft.

Abstract

We study the problem of a robust planner who designs an optimal taxation scheme for
a heterogeneous population in presence of uncertainty about the shape of the distri-
bution of underlying types. Low-income workers are well insured under the optimal
scheme, and so concerns about the left tail of the type distribution are negligible. On
the other hand, the planner fears misspecification of the right tail of the type distri-
bution emerging from budgetary concerns. Even when the tail of the distribution is
Pareto, arbitrarily small misspecification concerns lead to zero marginal taxes at the
top. A quantitative calibration shows that a plausible degree of uncertainty leads to
an optimal tax scheme with substantially reduced marginal tax rates for high-income
earners and a peak marginal tax rate much lower than in the model without uncer-
tainty.
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1 Introduction

It is well-known from the theory of optimal taxation (Mirrlees (1971)) that the shape of the
marginal tax curve crucially depends on the shape of the underlying labor productivities
and labor supply preferences.! Despite increasingly available surveys and administrative
micro-data on income, estimating a joint distribution of skills and preferences that will
realize over a particular fiscal planning horizon remains a complex task. The problem is
more severe in the tails, where sample sizes are extremely small relative to the time-series
variation in counts and incomes of high earners. Moreover, the problem gets even more
difficult if we want to jointly estimate productivity and labor supply elasticities for such
individuals.

In this paper, we study optimal taxation of labor income when the government ac-
knowledges uncertainty about the underlying distribution of skills and preferences. We
find that these concerns generally lead to lower progressivity. More strikingly, we find
that the celebrated Diamond (1998) and Saez (2001)’s high top marginal tax rate result is
overturned. By introducing a minimal degree of uncertainty to the Diamond-Saez setting,
we prove that the top marginal tax approaches zero at a rate that is bounded away from

zero and independent of structural parameters.

Methodologically, we build on Hansen and Sargent (2008)’s notion of “robustness”
which aims to construct policies that work well not just for a single distribution but across
a set of distributions. The concerns about the shape of the type distribution manifest as a
max-min game between a government that chooses a nonlinear tax schedule to maximize
a given welfare criterion and its alter ego that adversely perturbs the joint distribution of
skills and preferences away from a given benchmark distribution subject to a penalty. Mo-
tivated by measurement concerns, we use a penalty that scales in a statistical measure of
distance between the two distributions, i.e., relative entropy. The max-min problem allows
the government to design a tax schedule that is robust with respect to a set of distributions
that are hard to distinguish from each other using an available finite data sample.

While our work has elements in common with public finance and Hansen-Sargent ro-
bustness literature, there are several distinct differences. Similar to the classic Mirrlees
problem, we examine a static environment where individuals vary in skills and prefer-
ences, and they supply labor given a non-linear tax schedule. The government devises
this schedule to maximize a social welfare criterion while adhering to a budget constraint.
Our approach differs in the explicit modeling of the uncertainty the government faces
regarding the type distribution. Instead of assuming certainty as in the traditional Mir-

rlees framework, our government uses the max-min formulation discussed previously.” If

1gee, for example, Golosov, Troshkin, and Tsyvinski (2016).
2There is a small number of papers that bring statistical concerns to an optimal taxation problem. See Lock-



we set the penalty in the max-min problem to be large enough, our problem converges
to the standard Mirrlees problem in which the planner perfectly knows the shape of the
type distribution—a feature that gives us a convenient point of departure. We label the
problem involving an infinite penalty as the “baseline problem”, and we refer to the type
distribution in this baseline as the “benchmark” distribution. Similarly, we use terms like
“robust problem” and “worst-case distribution” to denote the planner’s problem with a
finite penalty and the adverse distribution chosen by the minimizing agent, respectively.

Compared to the robustness or more generally the literature on ambiguity®, we focus
on a different type of uncertainty. While the existing literature primarily deals with the dis-
tribution of alternative potential outcomes or states of nature a decision-maker might face
under uncertainty, our government is concerned about the uncertainty about the shape
of the cross-sectional distribution. Households who have private information about their
types of skills and preference face no uncertainty. Moreover, our formulation expands
upon the typically used one-parameter penalty specification, allowing us to express vary-
ing degrees of uncertainty in different segments of the underlying distribution. For exam-
ple, we can formally articulate when the government is more uncertain about the extreme

ends (“tails”) of the distribution than the central part.*

Our formalization allows us to examine the optimal nonlinear tax schedule using stan-
dard mechanism design techniques and use the revelation principle. This enables us to
recast the problem of choosing a nonlinear tax schedule equivalently as selecting an op-
timal allocation, subject to truth-telling constraints. To compare our results with existing
literature, we begin with a scenario where the type distribution is one-dimensional (skills),
and the penalty is scalar. We then broaden our scope to more complex situations. For
this simplified setting, the Diamond-Saez results show that in the baseline problem, the
marginal tax rate for a particular skill level is determined by the so-called ABC formula.
This formula consists of three components: A) a term dependent on labor supply elastic-
ities, B) a term tied to the hazard rate at a given skill level, and C) a term that relates to
the shape of the distribution above that skill level. These three factors strike a balance be-

wood, Sial, and Weinzierl (2021) and Chang and Wu (2023). Our work differs from these studies in modeling
statistical concerns over an infinite dimensional object—the entire type distribution—using a non-Bayesian
robust control approach, while they model uncertainty over a finite set of parameters that are handled with
Bayesian techniques. Those papers found that parametric uncertainty in their environment leads to a more
progressive tax system while we find the optimal tax schedule to be less progressive relative to the baseline.

3See, for example, Adam and Marcet (2011), Hansen and Sargent (2012), Karantounias (2013), Bhandari,
Borovicka, and Ho (2024), and Hansen and Miao (2022).

“There is a separate but related literature on mechanism design with moral hazard when the planner has
limited knowledge of agents” action set. See, for example Carroll (2015). Vairo (2024) applies such a framework
to study optimal taxation when agents’ action sets consists of how risky their income profiles are. She finds
that the optimal tax schedule should be uniformly progressive and in some cases will have higher taxes at the
top as compared to a baseline in which the action sets are known. In her setting, a decreasing marginal tax rate
encourages socially undesirable risk-taking. Our setting does not feature such moral hazard considerations.



tween the efficiency costs of labor supply distortion caused by the marginal tax imposed at
a given skill level, and the benefits derived from redistributing additional income collected

from workers above that skill level in a non-distortionary fashion.

We illustrate that in our context, the marginal tax rate adheres to a modified Diamond-
Saez ABC formula. The difference lies in the replacement of the hazard rates and distribu-
tions with the worst-case distribution, which is determined as part of the max-min prob-
lem. This ex-post Bayesian representation helps us analyze the differences in the optimal
tax schedule with and without concerns for misspecification of the type distributions by
breaking it down into two logical components: 1) what influences the shape of the worst-
case distribution, and 2) how the tax schedule is pinned down by the Diamond-Saez ABC
formula given the shape of the worst-case distribution. Since the worst-case distribution
is an endogenous object that relies on the shape of the tax function, the solution to the
robust optimal tax problem is a fixed-point that simultaneously characterizes the optimal

tax schedule and the worst-case distribution.

Our first theoretical result is the analysis of the top tax rate in a familiar setting with
quasilinear preferences, Rawlsian welfare weights, and a benchmark distribution that has
a Pareto tail. In the baseline, when the penalty is infinite and the planner is therefore
certain that the benchmark distribution is the correct type distribution, the Diamond-Saez
ABC formula shows that the top tax rate approaches a positive finite value that depends
on the labor supply elasticity and the Pareto tail parameter. This tax rate is quantitatively
quite large—around 70-75% for reasonable elasticity and tail parameters. Intuitively, the
thick tail of the productivity distribution means that the government can always collect
sufficient revenues from the right of any given threshold productivity to offset the cost of
distortions due to an increase in the marginal tax rate at that threshold. For similar reasons,
for distributions with bounded support or, more generally, with thin tails, the top tax rate

approaches zero.

Now consider the problem faced by a government which is concerned that the underly-
ing benchmark Pareto distribution is misspecified. We first show that the ratio of densities
of the worst-case distribution and the benchmark Pareto distribution has an exponential
tilting expression familiar from the robustness literature. The worst-case density shifts
mass away from worker types who are valuable to the government but the magnitude of
this reweighting is disciplined by the entropy penalization of the statistical discrepancy
between the benchmark and the worst-case distributions. In our context, an individual’s
value to the government is determined by two components: first, their utilitarian contri-
bution to the welfare objective function, which depends on the individual’s indirect utility
under the optimal allocation, and second, their contribution to easing the government
budget constraint, which hinges on the net tax revenue the government collects from that



individual weighted by the marginal social value of a unit of consumption.

Moving mass away from the right tail of the productivity distribution is costly to the
planner and hence desired by the adverse player in the max-min problem because each
high-productivity individual generates substantial tax revenue that a redistributive gov-
ernment can use to provide transfers to low-skilled individuals. While tax revenues raised
from a particular productivity type rely on the product of productivity level and the mass
of agents at that productivity level and decrease as we move further into the right tail, the
entropy cost of shifting mass from the right tail diminishes much more rapidly because it
scales only with the density. Consequently, in the minimization part of the max-min prob-
lem, gains from skimming the density in the right tail grow as we move further into the
tail, regardless of the penalty value. We demonstrate that the optimal top tax rate gradu-
ally reduces to zero, with the worst-case distribution approaching a distribution with an
exponentially decaying density, or a thin tail, in spite of the benchmark distribution being
a Pareto that has a polynomial decay in the tail, or, more generally, any other fat-tailed dis-
tribution. Thus, the mechanism formalizes the practical concern of policymakers to deal

with welfare-relevant aspects of tail behavior that are very hard to detect.

The asymptotic top tax rate is necessarily a statement about limits, and may not be
relevant if marginal tax rates approach the zero limit very slowly. To investigate that, we
study the elasticity of the marginal tax rate with respect to income. We show that in the
limit as productivity becomes large, the worst-case distortion is dominated by planner’s
concerns about the amount of tax revenue raised from those types. The slower the decay in
the marginal tax rate, the higher the revenue collected from the very productive individu-
als. But higher revenue means these individuals are more valuable to the government, and
the adverse agent in the max-min problem has stronger incentives to shift the worst-case
density away from them. As their mass becomes smaller, the redistributive gains from
taxing high-productivity individuals decline, and the marginal tax rate dictated by the
Diamond-Saez formula falls faster. We show that this fixed point is resolved in a unique
value such that the elasticity of the marginal tax rate with respect to income equals minus
one half. Remarkably, this asymptotic decay rate of the marginal tax rate is independent
of any primitive parameters, such as preferences of the household or the government or

those characterizing the distribution of skills.

After establishing the main results in the tractable quasilinear-Rawlsian setting, we ex-
tend our analysis to more general environments. We study extensions that allow more gen-
eral utility functions that feature concave preferences over consumption and more general
welfare weights. We show that the robust optimal top tax rate is still zero and the limiting
rate of convergence is bounded below by negative one half. We then generalize the robust

analysis so that the penalty function belongs to a class of power divergences that go be-



yond just relative entropy. We show that although in some cases the robust optimal top
tax rate can be positive, it is always strictly lower than the baseline optimal top tax rate.

To examine the complete tax schedule rather than just the top tax rate, we resort to a
numerical solution. The benchmark distribution is calibrated as an exponentially modified
Gaussian (EMG) distribution for the logarithm of productivity. Although the top tax rate
is not influenced by the specific value of the penalty parameter that controls the degree
of misspecification concerns about the shape of the productivity distribution, the overall
shape of the tax function is.

In order to quantify the magnitude of model misspecification concerns, we think of a
planner who designs a tax schedule and commits to it for some planning horizon, say five
years. We use time-series variation in income distributions over such planning horizons
to construct a set of alternative distributions that the planner considers as plausible. This
set is rich and contains all distributions in the smallest “entropy ball” that encloses the
observed distributions in a given 5 year interval. The radius of this set maps to the penalty
parameter in our max-min problem and the center maps to the benchmark distribution.
By varying the timing and size of the window, we study the sensitivity of the optimal tax
schedule to the degree of misspecification concerns.

We evaluate our findings against the baseline scenario, in which the penalty parameter
is infinite. We observe significant effects of the presence of misspecification concerns on the
marginal tax rate. For instance, households earning more than $500,000 face a baseline tax
rate exceeding 70% in the absence of misspecification concerns, but under our preferred
calibration, the optimal tax rate peaks at 57.5% for earnings around $375,000. This rate
falls to 50% for households with incomes of $1 million, ultimately diminishing to zero, as
suggested by our theory. These lower tax rates result in an approximately 2% increase in
output but also lead to slightly more than 8% reduction in transfers to the lowest-income
households.

Finally, we consider a case in which the government is uncertain not just about the
distribution of labor productivity but the joint distribution of labor productivity and labor
supply elasticities. The robust planner entertains a family of alternative joint densities in
which the conditional distribution of the elasticity of taxable income may vary with pro-
ducivity. In the worst-case, the elasticity of taxable income is positively correlated with
income exacerbating a familiar trade-off: revenues are disproportionately collected from
the top of the distribution, yet these same taxpayers may generate the largest deadweight
losses if their labor supply proves highly elastic. Anticipating this risk, the planner low-
ers marginal tax rates on high earners to hedge against the possibility of a sharp revenue
shortfall. Calibrating the degree of misspecification to match recent estimates for taxpay-

ers earning roughly five million dollars a year, we find that the optimal top marginal rate



falls from 66.5 percent in the rational benchmark to 14.0 percent—a reduction of roughly
52.5 percentage points. Importantly, the income distribution itself remains virtually un-
changed; what drives the result is not tail thickness but the feared interaction between tail
income and tail elasticity. The mechanism thus parallels our earlier one-dimensional anal-
ysis: whenever a large share of public resources is expected to come from a small set of
taxpayers, even modest doubts about their behavioral response can rationalize substan-

tially lower optimal taxes at the top.

The rest of the paper is structured as follows. Section 2 describes the simple model
with one-dimensional types and scalar penalty. Section 3 contains our main theoretical
results about the top marginal tax rate and the rate of convergence. Section 4 uses a cal-
ibrated economy to study the full tax schedule. Section 5 extends the environment to

multi-dimensional types. Section 7 concludes.

2 Model

The economy is populated by a continuum of workers indexed by their productivity z dis-
tributed according to density f (z) with a continuous support [z,Z] C R4 where Z may
be infinite. Productivity types are private information of the worker. A worker with pro-
ductivity z supplying labor n produces income y = zn. The worker solves the utility-
maximization problem

max U (¢c,n) s.t.c=zn—T(zn)
cn

where U (c, n) is a strictly concave and differentiable utility function representing worker’s
preferences over consumption and hours worked, and T (y) is the tax levied on income
y. Taking the tax function as given, worker’s optimal choice of labor supply yields the
condition

Uec(c,n) (1 =T (zn)) z+ Uy (c,n) = 0. (1)

Denote the optimal choice of consumption and labor C (z; T) and N (z; T), respectively, the
resulting output ) (z; T) = zN (z; T), and the associated indirect utility function ¢/ (z; T).
For the rest of the paper, we drop T as an explicit argument of functions C(-), N'(-), Y(+),
and U(-).

The government is in charge of choosing the tax schedule T as a function of observed
income y. Taxes are levied for redistribution purposes and to pay for government expen-

diture G. The government welfare objective is given by

EWU|+V(G) = [ 9 (@)U (2)dz+V (G)



where ¥ (z) is a Negishi (1960) welfare weighting function that satisfies E [¢] = 1, and
V (+) is a concave differentiable function.” For example, ¢ (z) = 1 implies a utilitarian
planner, while ¢ (z) = 6, (z) / f (z) where J; (z) is the Dirac delta function yields the Rawl-
sian welfare criterion. In the absence of model misspecification concerns, the government
chooses the tax schedule so as to maximize the welfare objective subject to the budget
constraint

G=EI[T(Y)].

We study the optimal taxation problem in a situation when the government is concerned
that the underlying distribution of productivity types f (z) is misspecified. In the spirit of
Hansen and Sargent (2001a,b), the government contemplates a set of alternative type dis-
tributions f (z) that are statistically close to the ‘benchmark’ distribution f (z). We denote
m(z) = f(z) /f (z) the likelihood ratio between the benchmark and the alternative dis-
tribution, and E [-] the expectation operator under the distribution f (z). By construction,

E [m] = 1. For any integrable function X (z), the Radon-Nikodym theorem implies

E [X] :/ZZX(z)f(z)dz:/ZZX(z)m(z)f(z)dz:IE[mX]. ©

The degree of statistical distinguishability of the two distributions f (z) and f (z) is repre-
sented by their relative entropy

£ <f,f> =E [mlogm] = /:m(z) logm (z) f (z) dz.

The relative entropy is nonnegative, and is equal to zero if and only if m = 1 with prob-
ability one. Alternative distributions f (z) that are statistically easier to distinguish from
f (z) yield a larger relative entropy.

The government desires to choose a tax function that would perform well across the set
of alternative type distributions f (z) that are statistically not too distinct from the bench-
mark distribution f (z). We restrict this set by an entropy bound «:

F(f,x) = {f: £ (f,f) < K}.

A larger value of x represents stronger model misspecification concerns. This leads to the

maxmin problem for the government:

max min E [yU] 4+ V (]E [T ()))]> . (3)
T feF(fx)

5The results carry over to the case when G is an exogenous amount of government expenditures that the
government must raise.



The first term in the objective function is equal to the government welfare E [$1/] evaluated
under the alternative distribution f(z) The second term are the total net tax revenues,
again evaluated under the alternative distribution, that are raised to pay for government
expenditures G = E [T ())].

The government problem (3) leads to an optimal tax function that is robust to misspeci-
fications of the type distribution that adversely affect the government objective. The prob-
lem can be interpreted as a two-player game in which the government faces a malevolent
nature that chooses alternative distributions with the most adverse welfare consequences
for the contemplated tax function. In line with the literature, we call the distribution f(z)

that solves the minimax problem in (3) the worst-case distribution.

It will be more convenient in our analysis to work with an equivalent penalized version

of the government problem:

max %EI(} E [mypU] + V (E [mT (Y)]) + 6E [mlogm], (4)
E[m]=1

where we represent the alternative distributions fusing their likelihood ratio m as in (2).
Since f (z) = m (z) f (z), the likelihood ratio m (z) plays the role of a weighting function

that over- or underweighs the alternative distribution relative to the benchmark.

The first two terms of the objective are the same as in (3). The last term is an entropy
penalty that penalizes distributions with a large statistical distance from the benchmark
distribution. The degree of penalization is controlled by the parameter 6. This parameter
can be interpreted as the Lagrange multiplier on the entropy constraint £ ( f f) <« fora
suitable value of k. A larger value of § implies a tighter entropy constraint with a smaller «,
leading to a worst-case distribution that is statistically closer to the benchmark. As 6 — oo,
the entropy penalty becomes prohibitive, model misspecification concerns vanish, and we
obtain f = f, equivalent to x = 0.

The government problem implies that the malevolent nature exploits both the direct
welfare impact as well as the budgetary consequences of adversely chosen distributions.
On the one hand, it desires to impose a high m (z) for types with low welfare impact
P (z) U (z) to lower E [mypU]. On the other hand, it strives for adverse budgetary conse-
quences by underweighing types for whom T () (z)) is positive (net tax payers) while,
vice versa, overweighing those for whom T () (z)) is negative (net tax recipients), and
thus lowering the net revenue G = E [mT ()))]. At the same time, alternative adverse dis-
tributions j?(z) chosen by nature cannot be too distinct from the benchmark so as not to

incur a large penalty 0E [m log m].



2.1 Mirrleesian formulation

Rather than solving for the optimal tax function (4), we follow Mirrlees (1971), and char-
acterize the constrained optimal allocation under the restriction that the tax function can
only depend on worker’s income. As usual, we cast the problem as a mechanism design
problem, and rely on Myerson (1979), focusing on incentive-compatible mechanisms in
which workers truthfully reveal their types. The social welfare function that the mecha-

nism implements is given by the inner minimization problem in (4).

The government offers to workers a menu of allocations (¢ (z),y (z)) indexed by z.
Worker of type z chooses a reporting strategy 2 that entitles to consumption c () in ex-
change for providing output y (£) that requires labor input y (2) /z. The reporting strategy
therefore solves the announcement problem

ngaxll (c (2),%2)) .

Incentive-compatibility requires that the optimal report satisfies Z = z. The first-order

necessary condition evaluated at Z = z yields

U. <c (z),y(zz)> d (z) + U, (c (Z)/y(z)> y @) =0. (5)

z z

Totally differentiating the utility function with respect to z at the allocations (¢ (z),y (z))

and plugging in the optimal reporting strategy condition derived in (5), we obtain

a_ <C (z),ﬂz)> y(z) ©)

dz z z?2

This is a condition on the utility gradient the menu (c(z),y (z)) has to satisfy to be lo-
cally incentive-compatible (IC). When this condition holds, the worker has no incentives
to misrepresent the true type by an infinitesimal deviation.

The key obstacle is the complicated structure of the social welfare function involving

the minimization problem over alternative distributions. However, we can apply the min-

imax theorem to exchange the order of optimization in (4).° The planner is thus solving

min max/1p ( z), <ZZ>>m(z)f(z)dz+V —I—G/ z)logm (z) f (z) dz

m>0 cy
(7)

®We provide a formal verification of the applicability of the minimax theorem for a special case in Ap-
pendix A. We verify more complicated cases using numerical algorithms.




subject to the IC constraint (6) and the budget constraint

G= [ e -cE)mE f ) ®)

Given a fixed function m (z), the inner maximization problem is now a standard con-

strained allocation problem. Assuming that the function

g(c,n) = —nm )

is strictly increasing in n for each fixed c implies a single-crossing property under which the
local IC constraint (6) also implies global incentive compatibility, and allocations (c (z) ,y (z))

that satisfy incentive compatibility are also strictly increasing in z.

Since the IC constraint is type-by-type and does not depend on the underlying distri-
bution, the model misspecification concern on the side of the planner does not alter its
form. We can therefore rely on the convenient Hamiltonian formulation that characterizes
the allocation given by the inner maximization problem in (7), and yields a modification of
the Diamond (1998) and Saez (2001) elasticity formula for the marginal tax rate. Treating
U as the state variable, A as its co-state, and y and m as control variables, we form the

constrained Hamiltonian

H@ymA) = §E@UEME)f()+0m () logm(2) f (2) —xm ()£ (2) (10
2@ U (e, M) L sy @) - c@Im ) £ ).

72

Here, x and y are multipliers on the constraints [E [m] = 1 and (8), respectively, and ¢ (z) is
defined implicitly from the definition of the utility function as ¢ (z) = C (U (z) ,y (z)).

We derive a general characterization of the problem in Appendix B. Here we provide

the analysis of a special case with quasilinear preferences and isoelastic labor disutility.

Assumption 1. Workers’ preferences are given by

ni+r
U(,n)=c— , 11
(cm=c=1 an
and the function V (G) satisfies, for some G > —oo,
lim V' = lim V' =0. 12
dim, (G) =00 Jim, (G)=0 (12)

The Inada conditions (12) guarantee an interior solution to the government problem.

The first-order condition with respect to m (z) in (10) together with the restriction

10



E [m] = 1 yield a characterization of the worst-case distortion in the form of an expo-

nential tilting formula

() =mexp (5 [0 (UG + T )], 13

where 17 is a normalization constant that assures E [m] = 1, and T (v (z)) = y(z) — c(z)
represents the effective tax the allocation imposes on worker of type z. The remaining
optimality conditions then imply the formula for the marginal tax

Ty()
Ty Y

‘T’(z)if(z)l—~f(z)’ (19)
1

—F(z)  zf(2)

where F (z) is the cumulative distribution function of the worst-case density, and ¥ (z) is

planner’s cumulative welfare weight

Fo) = [F@d= [ m@f @
. = P f(©Q)
Y(z) = _ dc.

() é]?ﬂ@ﬂaxg

The lump sum portion of the tax T (y (z)) imposed on the least productive worker is then
determined so as the whole tax scheme equalizes the marginal cost of public funds y, i.e.,
the utility cost of raising an extra unit of tax revenue, to the marginal value of government
expenditure

n=Vvi(G).

The optimal marginal tax formula is analogous to that of Diamond (1998) and Saez (2001),
except that now, it depends on the endogenously determined distribution fN(z) repre-
sented by the distortion m (z) in (13). The first term on the right-hand side of (14) captures
distortionary effects of taxation on the labor supply, indicating that marginal taxes should
be lower when the inverse of the labor supply elasticity v is low. The second term repre-
sents the desire for redistribution, and is bounded above by one. Marginal taxes will be
strictly positive when ¥ (z) > F (z), indicating a planner that puts higher welfare weights
on lower worker types in the first-order stochastic dominance sense. Finally, the third term
is determined by the shape of the tail of the type distribution, and it represents the tradeoff
that an increase in the marginal tax T’ (y (z)) causes at a particular z. This marginal tax
has an adverse distortionary effect on the labor supply of all workers with type exactly at
z, leading to a total output loss zf(z), while generating the benefit of raising extra revenue

in lump sum fashion from all workers with type above z, whose mass is 1 — F (z).

The form of the distortion (13) reveals that the model misspecification concerns of the

11



robust planner have a redistributive and a budgetary component. The numerator of the
expression for m (z) = f (z) /f (z) in (13) indicates that the robust planner underweighs
worker types who, under the optimal tax policy, receive allocations with high weighted
utility ¢ (z) U (z) or those with high net contributions to the planner’s budget, uT (y (z)).
The Lagrange multiplier u converts the tax revenue to utility units under the government

welfare function.

The planner uses the tax policy to maximize the social welfare function. Since insur-
ance is not perfect, the worst-case distribution that puts more weight on types with a low
P (z) U (z) and less weight on types with a high ¢ (z) U (z) reflects the concern that the
chosen tax function achieves lower welfare E [1/] than that measured under the bench-
mark model, E [¢U/].

At the same time, the government needs tax revenue to achieve the desired redistribu-
tion and spending. Underweighing worker types who deliver high tax revenue uT (y (z))
and overweighing those who deliver low tax revenue uT (y(z)) reflects concerns that
worker types who contribute substantially to the budget are less abundant than under

the benchmark model, making it more challenging to achieve the desired goals.

The parameter 0 controls the entropy penalty in the planner’s problem (7) and hence
the degree of model misspecification concerns. A small value of 6 reflects more substantial
concerns, which leads to stronger exponential tilting in (13). As § — co, model misspecifi-
cation concerns vanish, and the worst-case density f(2) approaches the benchmark model
density f (z) in the statistical sense expressed by the entropy penalty E [m log m].

Importantly, the worst-case distortion m (z) in (13) and the tax function T (y (z)) in (14)
are determined jointly as an outcome of the minimax problem (7). Given the tax function,
the worst-case density delivers the lowest penalized objective in (7), and vice versa, tak-
ing the worst-case density as given, the tax function maximizes planner’s welfare. The
solution is a saddle point in the objective function that constitutes an equilibrium in a

two-person game between the benevolent government and the malevolent nature.

3 Optimal marginal tax rates at the top

In this section, we provide an analytical characterization of the asymptotic behavior of the
tax rate in (14) in the presence of model misspefication concerns.

When the planner is utilitarian with ¢ (z) = 1, then, due to the quasilinear form of
preferences in (11), the motive for redistribution is absent. Equivalent to the case without
misspecification concerns, we obtain that marginal taxes are zero, T’ (y (z)) = 0. Redis-

tributive concerns are therefore induced by a decreasing welfare weighting function ¢ (z).
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Here we focus on the case in which there exists a 2 such that ¢ (z) = 0 for all z > 2.
The planner hence puts a zero welfare weight on the right tail of the worker distribution.
In this case, ¥ (z) = 1forz > 2, and the tax formula becomes

T'(y (2)) 1-F(z)
— = (1479) ——= (15)
@ Y e

Since the second term in the tax formula (14) is bounded above by one, the current case
yields the highest possible tax rate in the tail of the type distribution across all alternative

welfare functions. The worst-case distortion for z > 2 then becomes

m(z) = mexp (~5T (v (2)), (16)

corresponding to a special case of formula (13). The misspecification concerns in the right
tail of the distribution therefore do not involve the welfare of high-type agents, and only
reflect the concerns about the budgetary consequences of not having sufficiently many
high-type workers who contribute to the budget.

In Section 3.4, we provide the analysis of the more general case that relaxes the as-
sumption of quasilinear preferences in (11) and also treats more general welfare weighting
functions so that the welfare concern term ¢ (z) U (z) in (13) is not zero in the right tail.
It turns out that in most cases, the budgetary concern uT (y (z)) dominates, and when it
does not, the additional welfare concern further reinforces our results.

3.1 Zero marginal taxes at the top

In the absence of model misspecification concerns, m (z) = 1, which implies that the worst-
case distribution in (15) corresponds to the exogenously specified benchmark model. The
limiting tax rate then depends on the shape of the benchmark distribution. When the
distribution f (z) is sufficiently thick-tailed, then the marginal tax rate determined (15) has
a strictly positive limit. For example, in the case of the Pareto distribution with shape
parameter a, we have (1 — F(z)) / (zf (z)) = a~!. On the other hand, bounded or thin-
tailed distributions, such as normal or lognormal, imply a zero limit. This has lead to
widely differing policy prescriptions about the range of recommended marginal tax rates

the planner should impose on top incomes.”

When model misspecification concerns are present, we characterize the shape of the

"For example, Diamond and Saez (2011) find a mid-range estimate for the top marginal tax of 73%, based
on labor supply elasticity 7! = 0.25 and a Pareto distribution of types z with shape parameter « = 1.875
(under the given elasticity of labor supply, this translates to a Pareto distribution of incomes y (z) with shape
parameter ay = 1.5).
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worst-case density
f&)=m) f(2) =mexp (~5T(1(2)) f (2). a7)

The distribution f(z) remains continuous, which implies that lim, s F (z) = 1. When
z is finite, the conclusion about the top marginal tax rate is the same as without model
misspecification concerns, and lim,_,z T’ (y (z)) = 0. To see this, notice that in order for
the top marginal tax rate in (15) to be different from zero, we need lim, ,; zf (z) = 0. In
this case, we can apply L'Hopital’s rule to obtain

limﬂ = lim—% =0,

=7 zf(a) R 14 oMl
where the conclusion follows from the fact that lim,_. zf(z) = 0 for a finite Z implies
lim, ,zlog f (z) = lim,_,: ;—Zlogf(z) = —oo. This is a contradiction and the limiting
marginal tax at the top must be zero.

We therefore focus on the more interesting case when z = co. It turns out that the

marginal tax rate at the top still asymptotically converges to zero.

Assumption 2. There exists a Z such that the type density f (z) under the benchmark distribution
is continuously differentiable on [2,Z), and zf (z) is strictly decreasing on [2,Z), with

lim dlogf (z) < =
z—z dlogz

with the limit possibly being —oo.

Theorem 3.1. Assume that preferences satisfy Assumption 1, the type distribution satisfies As-
sumption 2 with Z = oo, and 6 < co. Then the marginal tax rate vanishes to zero at the top:
. / _
lim T°(y (z)) = 0.
We formally prove the theorem in Appendix C.1. The proof requires a technical treat-
ment of the existence of the limit but conditional on its existence, the result is intuitive.

Denote T}, (yrat (z)) the optimal marginal tax rate in the model without model misspecifi-
cation concerns, 8 = co. Then

lim Trat (Yrat (2))
zoe0 ] — Tr{ut (yrat (Z

< o0,

_ . 1-F(z) _ m -~
IR Ty T IR T

where the second equality follows from an application of L'Hopital’s rule, and the final
inequality is implied by Assumption 2. This yields lim; e Ty (Yrat (2)) < 1.
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Further, the single-crossing property (9) implies that the optimal incentive compati-
ble scheme yields output y (z) that is strictly increasing in worker’s type z, and since the
marginal tax is strictly positive, m (z) in (17) is strictly decreasing. This implies that, for
any z > Z,

1-F(z) 1-F(z)
= <
#f(z) )

and hence also lim; e T (y (2)) < limy oo T}y (Yrat (2))-

The limiting tax rate under model misspecification cannot, however, be positive. If it
were converging to T, > 0, then the output function y (z) implied by the optimal labor

choice (5) for the case of quasilinear preferences (11) would asymptotically behave as

1 1+ 1 14y
y(@)=1-Ty())z7 =(1-1)7z7, (18)
and the worst-case distortion as
o u o M B 1 14y
m(z)-mexp( OT(y(z))>~mexp( 9700(1 Too)7 2 7 ) (19)

In that case, an application of L'Hopital’s rule to the tax formula (15) yields

. T' (v (z)) . 1-F(z) 1+
lim ———2— =1lim (1+79) ——~ = lim .
e 1-T(y(2)) = 2f(z) R EAT(y(2) - TELE -1

=0, (20)

because the first term in the denominator diverges to co. This is a contradiction to the
assumption that lim; ;e T" (¥ (z)) = T > 0, and hence the tax rate has to converge to

Zero.

The striking result is that the marginal tax rate at the top converges to zero irrespec-
tive of the degree of model misspecification concerns. Since we abstracted from welfare
concerns at the top of the income distribution, the planner only cares about the budgetary
consequences associated with taxing top incomes. From this perspective, the robust plan-
ner is concerned that there are fewer high-productivity workers that can be taxed.

The form of the distortion in (16) indicates that the concerns grow proportionally with
the marginal social value of the tax revenue uT (y (z)) that the worker with a given pro-
ductivity z contributes to the budget. The distortion m (z) therefore becomes more severe
as z increases, effectively generating a thinner tail in the worst-case distribution f (z) in
(17). This consequently implies a lower and vanishing optimal marginal tax as z — oo,
since the tradeoff of an increase in the marginal tax T’ (y (z)) at z that compares the extra
benefit of taxing workers above z with the cost of distorting labor supply of workers at z
becomes less favorable under the worst-case distribution.
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While we have shown the vanishing marginal tax rate result for the case of quasilinear
utility and no planner’s welfare concerns in the right tail of the type distribution, these
results carry over to more general cases. We show in Section 3.4 that the result also holds
when utility from consumption is concave, and in the presence of welfare concerns at the

top of the type distribution when ¥ (z) only asymptotically converges to one.

The intuition for these generalizations is straightforward, as they yield the more gen-
eral form of the distortion of the type distribution represented by expression (13). The
case of concave utility leads to a different marginal social value of public funds y and to a
different optimal tax function trajectory T (v (z)) but since yu remains strictly positive, we
only need to show that the tax revenue T (y (z)) under the optimal tax continues to diverge
toocoasz — oo.

Adding welfare concerns corresponds to a nonzero ¢ (z) function as z — co. Since
U (z) is increasing in z, this can only lead to a more strongly decreasing distortion m (z),
as the budgetary and welfare concerns of not having sufficiently many workers with high
types who contribute substantially both to the budget as well as to the welfare objective
reinforce each other.

3.2 Rate of decay of the tax rate

Theorem 3.1 shows that the marginal tax rates at the top vanish to zero irrespective of the
underlying type distribution. However, the theorem does not determine the rate of con-
vergence. In quantitative applications, the rate of convergence matters because it sharpens
information about the practical importance of the asymptotic behavior for finite values of
productivity z.

In this subsection, we derive this rate of convergence. We first state it in the form of
a theorem, and then provide a derivation of the result that leads to a specific differential
equation that will be helpful in numerical implementation of the full characterization of
the optimal tax scheme.

In order to simplify the formula, we strengthen Assumption 2 and assume that the tail
of the benchmark density f (z) is given by a Pareto distribution with shape parameter a.
This is the prototypical choice that yields strictly positive asymptotic marginal taxes in
absence of model misspecification. We characterize the following result directly in income
space, treating y = v (z) as the endogenous income of each worker. Previous results imply
that lim;_,. v (z) = 00, so that limits z — co and y — co are equivalent.

Theorem 3.2. Assume that preferences satisfy Assumption 1, underlying productivity has a right
tail that is Pareto distributed with shape parameter x, and 6 < oo. Then the limiting tax rate
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satisfies
lim £ (7' (y)]*y = 7. (21)

Yy—00

In particular, the limiting elasticity of the marginal tax with respect to income, if the limit exists, is
equal to
/
im 1087 W) _ 1 (22)
y—eo  dlogy 2
The proof of the theorem is provided in Appendix C.3. Expression (21) depends on one
endogenous object, the marginal social value of wealth y, which needs to be determined

separately. The expression implies that the marginal tax rate has to decay to zero at rate

1
log T' (y) ~ —Elogy.

As a result, if the elasticity of the marginal tax rate with respect to income has a limit, this
limit has to be equal to —3.

In Section 3.4 and Appendix D, we again show how this result generalizes when we
relax the assumptions of the theorem. Broadly speaking, the elasticity expression (22) re-
mains robust but the rate of decay of the marginal tax rate to zero may be even faster
when, for example, planner’s welfare concerns for the top income earners are sufficiently
strong, or when the type distribution under the benchmark density is already sufficiently
thin-tailed to begin with.

Remarkably, the elasticity of the marginal tax rate with respect to income (22) does not
depend on any of the parameters of the model. In order to understand the result, assume
that for incomes y > 7, the marginal tax rate T’ (v) is sufficiently well approximated by a
constant elasticity function with elasticity v. Taking a 7 > #, we can write

T =TW+ [ TWdTE)+ [ 140y =T () g +7*

This means that asymptotically, for high-productivity types Z with income § = y (2), the
worst-case distortion behaves as

=\ = ‘u - ~ H_1+v
n(2) = mesp (47 (9) = vep (') @
where 711 absorbs the contribution of terms T () — #'*7. At the same time, the output func-
tion y (z) in (18) implies that as T’ (y) — 0, we can approximate y (z) ~ z 5 . Applying
L’Hopital’s rule as in (20), we obtain

lim Ty =(1+7)lim L (24)

e 1-T(y(2) ST (y (2) ¥ (2) - TREIE g
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The denominator on the right-hand side is then dominated by the the first term,

LT (@) (2) = & (1) T,
0 0 0%

Comparing the elasticities of the left-hand and right-hand side of (24) with respect to the
type z yields

11;71/:—1+7(v+1),

from which we obtainv = — %

Intuitively, expression (24) indicates that the optimal rate of decay of the tax rate bal-
ances two forces, the effect on the tax revenue T (y (z)) collected from high worker types
z, and the effect this tax revenue has on the worst-case distortion m (z). If the decay rate
was higher (a more negative v), then the tax revenue T (y (z)) would grow more slowly as
z — o0. This would consequently diminish the budgetary concerns of the model misspeci-
fication in (23), the worst-case density f(z) would be less distorted with a thicker tail, and
the optimal tax formula would indicate a more gradual decay of the tax rate. The chain of

arguments is reversed if the decay rate was lower (a less negative v).

The elasticity choice v = —3 thus uniquely identifies the asymptote of the saddle point
between the maximization problem that seeks the optimal tax rate, and the minimization
problem that finds the model misspecification with the most adverse consequences for the

planner.

3.3 Phase diagram

We formalize the proof of Theorem 3.2 by deriving a differential equation for the marginal
tax rate T’ (). After differentiating the tax formula (15) with respect to the productivity z

and a sequence of algebraic manipulations, we obtain the differential equation

1+7v+a

T// 1 -1
T Wy _ Z—WT’(]/)} [?‘ AT )] @)

T1-T(y) T+ g [T y—v+n

This equation depends on z only implicitly through y (z), and we therefore can treat the
equation directly as a function of income y. This is a first-order differential equation for
the unknown marginal tax T’ (1), and the unique strictly positive solution is pinned down
by the terminal condition lim, ;. T’ (y) = 0. More detail concerning the analysis of this
differential equation is provided in Appendix C.2.

The left-hand side of the differential equation is the elasticity of the take-home rate
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LAY et —— T'(y) solution
R ’,':/ — other paths satisfying ODE (26)
\ N ---  isoclines h(y, T'(y)) =0
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y

Figure 1: Phase diagram for differential equation (26). The dashed solid lines correspond to iso-
clines i(y, T'(y)) = 0, and the sign of h(y, T'(y)) in between these lines is depicted in the boxes.
The magenta line with circles corresponds to the unique strictly positive solution that satisfies the
terminal condition. Green dashed lines are other trajectories that satisfy (26). The parameters are
u=10=1a=15y=2.

with respect to income
_T"(y)y _ dlog(1-T(y))
1-T'(y) dlogy '
This elasticity must converge to zero as y — co. In order for the right-hand side of (25)
to converge to zero, the last bracket has to converge to zero. Since lim, ;o T’ (y) = 0, we
obtain equation (21) in Theorem 3.2.

Let us denote

1-7 T+y+a 17! 1+y+a
hy,T) = [2— 117 T:| [grzy—7+71171.

Then the differential equation (25) can be rewritten as

T (y) =h(y, T (v))- (26)

In Figure 1, we plot the phase diagram for this differential equation. The differential equa-
tion exogenously fixes the marginal social value of resources y, which must be determined
separately and jointly with the lump-sum tax on the lowest worker type T (v (z)) so that
the planner’s budget constraint holds. We reiterate that this characterization holds for the
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right tail of the type distribution that has a Pareto density and for which the planner has no
welfare concerns. This solution for the right tail can then be combined with that for the rest
of the type distribution that possibly has a different shape and for which welfare concerns
are nonzero, using the general expression for the marginal tax rate given by (13)—(14). The
marginal social value of resources i connects the solutions.

The black dashed lines are the isoclines for which the slope of the marginal tax curve
is equal to zero. Since the solution must satisfy the terminal condition lim, . T’ (y) = 0
and must be strictly positive, these isoclines bound the solution into the positive part of

the region denoted with the minus sign.

The solution is depicted with the magenta line with circles. Taking this trajectory from
the perspective of an initial value problem, the solution constitutes an unstable saddle
path. Starting from any other initial condition, the trajectories satisfying equation (26)
converge to one of two stable saddle paths visible in the graph, so they either converge to
one, or become negative. This also verifies that the terminal condition lim, . T (y) = 0
pins down a unique strictly positive solution. In addition, this solution for the marginal

tax rate must be strictly decreasing.

3.4 Generalizations

The preceding analysis studies the case when workers have quasilinear preferences and
the planner has no welfare concerns for high-type workers in the right tail of the produc-
tivity distributions. In this subsection, we briefly discuss generalizations of these results,
with detailed calculations provided in Appendix D. The central insight is that the marginal
tax converging to zero at an exponential rate equal to (at least) —1 is a robust result that

holds in a range of extensions.

3.4.1 Concave separable preferences

We first consider the case of general separable isoelastic preferences of the form

Cl—p -1 n1+7

U(c,n) =
(c,n) - Ul+7

(27)

where p is the inverse of the consumption elasticity, with logarithmic utility as the p — 1
limit. We still focus on the right tail of the type distribution for which we assume no
welfare concerns on the planner’s side, i (z) = 0. In this case, the optimality conditions
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for the Hamiltonian (10) yield the optimal tax formula in the form

TWE) g, 1-5()
—TyE) - Y e (@8)

where
folz) =7 (c(2))’ m(2) f (2) (29)

is now the inverse marginal utility weighted density under the worst-case model, with
normalization constant

1= [ (c@Fm@f @) =E],
and c(z) =y (z) — T (y (z)). The function fp (z) is the corresponding cumulative distribu-
tion function associated with density f, (z) defined in (29).

Theorem 3.3. Assume that worker’s preferences are given by the separable form (27), underlying
productivity has a right tail that is Pareto distributed, and 6 < oo. Then the marginal tax rate
vanishes at the top,

lim T’ (y) = 0.

y—00

More specifically, the limiting tax rate satisfies

lim B [T ()]*y = (v +0) E L], (30)

and hence the limiting elasticity of the marginal tax with respect to income is equal to

/
i 10570 1
y—eo  dlogy 2

This theorem generalizes Theorems 3.1 and 3.2 to the case of concave marginal utility
of consumption. Setting p = 0 recovers the special quasilinear case. As in the quasilinear
case, the zero limiting marginal tax is preserved in cases when the density that character-
izes the right tail of the distribution is thinner than Pareto, even though the decay rate may
then be faster than —3.

Intuitively, decreasing marginal utility from consumption effectively reduces the elas-
ticity of labor supply with respect to the productivity. But since the zero limiting marginal
tax result does not depend on the labor supply elasticity to start with, it is also robust with
respect to the introduction of more general separable utility form (27). The only differ-
ence is expression (30) that adjusts for the consumption elasticity, with the last term IE [c*]

converting goods to their marginal social value units.
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3.4.2 Welfare concerns at the top

When the welfare function does not assign zero weights ¢ (z) to top productivity types,
the determination of the limiting tax must also take into account the distortions under
the worst-case model that are due to welfare concerns. To illustrate the consequences, we
consider here the case of a utilitarian planner with ¢ (z) = 1. The worst-case distortion
then takes the form

1
() =mexp (5 U )+ T/ (2)]), 61
and the marginal tax formula can be expressed as

Ty(z) _ ¥(z) - F(2)

1-T(y(z zfp (2)

where ﬁ, (z) is the inverse marginal utility weighted worst-case density (29), F, (z) the
corresponding cumulative distribution function, and the cumulative welfare weight ¥ (z)

specializes to

¥(:) = [ Fod.

Comparing ﬁp (z) and ¥ (z), we have ¥ (z) > fp (z) whenever p > 0, which reflects the
redistributive motives of the utilitarian planner. When p = 0, the redistributive motive is
absent, and ¥ (z) = ?p (2).

The worst-case distortion m (z) in (31) now combines the contributions of welfare and
budgetary concerns. The distortion from the utility term I/ (z) reflects the concern that
there are fewer high-type workers in the distribution, which directly adversely affects the
planner’s objective function. Since both U (z) and T (v (z)) are strictly increasing in z, both
concerns imply a strictly decreasing m (z). Which of the two terms dominates depends on
the curvature of the utility function.

Theorem 3.4. Assume that worker’s preferences are given by the separable form (27), underlying
productivity has a right tail that is Pareto distributed, the planner is utilitarian with ¢ (z) = 1, the
curvature of the utility function is p > 0, and 6 < co. Then

lim T' (y) =0,

y—o0

/
y—eo  dlogy

and

The theorem shows that the direct welfare concern dominates when the preferences are
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sufficiently elastic, p < 3. In this case, the limited curvature of the utility function implies
that the utility term U/ (z) grows faster than the tax revenue that determines the budgetary
concern. However, the decay rate —1 derived for the benchmark model constitutes the

slowest rate of decay we can anticipate.

3.4.3 Power divergence functions

The objective function (7) of the robust planner penalizes deviations from the benchmark
using an entropy penalty, also known as the Kullback-Leibler divergence. While entropy is
a natural penalty choice from a statistical perspective, the tendency toward lower progres-
sivity holds for more general divergence functions. Here, we consider the Cressie and Read
(1984) class of power divergence functions analyzed, for example, in Almeida and Garcia
(2017) or Borovicka et al. (2016). The class of divergences is given by &, (m) = E [¢, (m)]

with
m1+r] -1

n(L+m)
where m (z) = f (z) /f (z) and 57 € R. Divergences &, (m) for 5 € {—1,0} are constructed
by appropriate limiting arguments, yielding the entropy & (m) = E [mlogm] in the limit

¢y (m) =

as 7 — 0. Relative to entropy, power divergences &, (m) for > 0 penalize relatively
more the deviations in the left tail of the distribution, while for 7 < 0 they penalize more
strongly the right tail.

Appendix D.5 provides more detail on power divergences. It also shows that replacing
0& (m) with 0, (m) in the planner’s objective function (7) leads, in the case when util-
itarian concerns are absent in the right tail of the productivity distribution, to the same

optimal tax formula (15) but the worst-case distortion (16) is now given by

==

m(z) = |3 (=T (v (2))] (33)
where y is the Lagrange multiplier on the constraint E [m] = 1. As in the entropy case,
the worst-case distortion is decreasing because the expression for the optimal marginal tax

implies that the marginal tax is positive.

Specializing to the case of quasilinear utility and Pareto-distributed productivity under
the benchmark distribution, the differential equation for the optimal marginal tax (25) now
takes the form
1+v+a_,

p y
EL VT gy 20T
AuT (y) —x Ty )

My [y 1trtan ]
Tty = [ T !‘

This leads to the following result.
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Theorem 3.5. Assume that worker’s preferences are given by the quasilinear form (11), the type
distribution satisfies Assumption 2 with Z = oo, the divergence penalty in the planner’s problem is
0&, (m), and @ < co. Then the optimal marginal tax rate T' (y (z)) for an agent with type z under
the robust planner is lower than under the planner without model misspecification concerns.

Moreover, assume in addition that the underlying productivity has a right tail that is Pareto
distributed with shape parameter «. When 1 > 0, then the marginal tax rate at the top satisfies

lim T' (y) = 0. (34)

y—o0
When 1 < 0, then the marginal tax rate at the top is given by

1 ~ 1 1
lim T’ (]/):1',7:;7~ withoc:zx—ﬂ—>a. (35)
y—voo T+y+a T

Expressions (34) and (35) show that the asymptotic top marginal tax is continuous in
the parameter 7 that indexes the power divergences. As y 0, it also converges to the

entropy case with zero asymptotic marginal tax.

Details of the derivation are provided in Appendix D.5. To provide intuition, consider
tirst the case # > 0. In this case, the worst-case distortion formula (33) implies that xy —
uT (y) > 0. This means that T (y) must be bounded from above, and since the marginal
tax T’ (v) has to be positive, it must converge to zero.

When 5 < 0, expression (33) implies that x — uT (y) < 0, so T (y) can be unbounded.
Conjecturing that the limiting marginal tax 7, € (0, 1), an asymptotic approximation anal-
ogous to that in (18) and (19) implies that the worst-case distortion (33) asymptotically be-
haves as a power function of z. This means that the worst-case density f (z) = m (z) f (z)
behaves asymptotically as a Pareto density, with an adjusted shape parameter «. This
shape parameter becomes arbitrarily large as # " 0, when the divergence function ap-
proaches entropy, and, in this case, the asymptotic marginal tax rate approaches zero.

4 Quantitative application

In Section 3, we provided a theoretical characterization of the tail behavior of the optimal
tax function when the planner is concerned about misspecification of the type distribution.
We now focus on a quantitative evaluation of the whole tax function. Specifically, we are
interested in a plausible calibration of the magnitude of the misspecification concerns, and

implications for the relative distortions across the type distribution.
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4,1 Model calibration

We base our benchmark model calibration on the results in Heathcote and Tsujiyama
(2021), who use labor income data from the Survey of Consumer Finances (SCF) to infer
the productivity distribution. Heathcote and Tsujiyama (2021) argue that the SCF pro-
vides substantially more information about the right tail of the productivity distribution
than other household surveys like the Current Population Survey (CPS).

They also show that the labor income distribution in SCF is very well approximated
by using the exponentially modified Gaussian (EMG) distribution for the logarithm of
the productivity x = logz. The EMG distribution describes the sum of a normal and an

exponential random variable, with density given by

- 2
. _ & s(2ptao?—2x) <V+‘X0' _x>
(xi,o,n) = —ez? erfc | ————
fe (6,0, 0) 5 J2e
erfc (x) = \/25/36 e dt.

This distribution implies that productivity z = exp (x) has support (0, o), the left tail fol-
lows the log-normal distribution with parameters ji, o, and the right tail is asymptotically
Pareto distributed with shape parameter a«. We can therefore invoke the theoretical results
derived in Section 3 for the case of the Pareto-distributed right tail.> We denote the class
of EMG distributions as Feg. As in Heathcote and Tsujiyama (2021), we choose & = 2.2
and 0?2 = 0.142. The first moments of the logarithm and the level of the productivity
distribution are given by

—_

o

_ s Lo
E[z]—exp<y+20>(x_1.

E [log z] =pi+

We set fi to normalize the average productivity to E [z] = 1.

We further assume a utilitarian planner endowed with a concave separable isoelastic
utility function (27), with parameters p = 1 implying logarithmic utility from consump-
tion, ¢ = 1, and y = 2. We choose V (G) = 7G, and set the marginal value of government
expenditures 7 so that G = 0 under the optimal tax scheme, implying that the government

only taxes for redistributive purposes.

Under the isoelastic utility function (27), as long as the asymptotic optimal marginal

tax satisfies lim;_,o T’ (z) < 1, the right tail of the income distribution inherits the Pareto

property, with shape parameter ’fj%a. Combined with logarithmic utility, p = 1, the in-

come distribution is asymptotically Pareto distributed with shape parameter a.

8Truncating the Gaussian component of the distribution fy (x) for a sufficiently high value of x so that the
tail has an exact Pareto distribution is quantitatively inconsequential.
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4.2 Quantifying model misspecification concerns

In order to quantify the magnitude of model misspecification concerns, we use the fol-
lowing strategy for the calibration of the entropy ball parameter x. Since changes in the
income tax schedule are infrequent, we envision that the planner designs the tax schedule
and commits to it for some foreseeable future, say five years. We then ask how much un-

certainty in the income distribution can the planner plausibly anticipate over this period.

We proceed as follows. We download data on quantiles of the annual U.S. income dis-
tributions for years 1966-2015 from the World Inequality Database.” For each year t we fit
an EMG distribution f; with parameters (fi;, 03, ;) to the logarithm of the income distri-
bution described by these quantile data. We then conservatively normalize the parameters
fir so that all estimated income distributions have unit mean in levels, to abstract from

differences in the distributions associated with aggregate growth in the economy:.

Subsequently, for each 5-year window {¢,...,t + 4}, we construct the smallest entropy
ball 7 (71}/ Kt) that includes all the estimated distributions fi, ..., fiia:

K = min {K : Elft € Femg s.t. fryi € F (?t,x) L= 0,...,4}.

We treat the EMG distribution f, at the center of the entropy ball as the benchmark dis-
tribution. Given the knowledge of this benchmark distribution, the planner contemplates
any of the distributions f;.;, i = 0,...,4, as plausible. However, the set F (ft, Kf) also
contains other distributions in the EMG parameteric class as well as a much larger nonpa-
rameteric set of distributions f that all satisfy £ (ft, f) < K.

Figure 2 displays the outcome of the procedure. Each circle represents the estimated
parameters («;, 07) for a given year of the data. The data points capture a visible trend that
reflects increasing inequality—the circles move over time from the bottom right to the top
left corner, reflecting increases in the thickness of the right tail (lower a;) and increases in
the dispersion of the left tail (higher o3).

The orange curves capture three examples of smallest entropy balls F (?t, Kt) con-

structed using five-year periods of data, with centers f, captured by the solid red dots. For
example, the entropy ball for period 1966-1970 covers all five distributions for this period,
with distributions for years 1969 and 1970 exactly at the boundary. Taking the distribu-
tion f, as the benchmark distribution, the planner views all EMG distributions within the
orange curve are viewed as plausible. However, as mentioned above, many other distri-
butions within F (ﬂ, Kt> are not represented in the figure as they fall outside the EMG
parameteric class.

9https://wid,world
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Figure 2: Estimated income distributions for U.S. data, 1966-2015. Each point shows the com-
bination of parameters (a, 03) of the estimated EMG distribution for the given year. The orange
curves represents three example entropy balls, centered at the solid red dots, for periods 1966-1970,
1986-1990, and 2011-2015.
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Figure 3: Relationship between the penalty parameter 6 and entropy « for the model calibrated in
Section 4.1.

Figure 3 converts the entropy constraint x into the corresponding penalty parameter 0
for the model calibration from Section 4.1. In our results, we will highlight implications
for the median and smallest size of the entropy ball, corresponding to 6 = 9.254 and 6 =
16.312, respectively. In each of the economies, we recalibrate 7 so that G = 0 under the
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worst-case model.

4.3 Asymptotic behavior of the marginal tax rate

We start with the following result that characterizes the marginal tax rate for the left and
right tail of the productivity distribution.

Lemma 4.1. When the logarithm of productivity z follows the exponentially modified Gaussian
with parameters (fi, o, a), the following results hold.

1. In the rational model (0 = o0), the asymptotic marginal tax rate is given by

oy (rt+p)(A+7)
}}%T(y)_w(wp)ﬂ(Hv)'

2. Under model misspecification concerns (8 < oo),

lim T’ (y) = 0. (36)
. dlogT' (y) . 1
ylgrolo W = min —E,p -1 (37)

3. For the left tail of the productivity distribution,

Iim T (y) =0,
y—0

irrespective of the value of 6.

A sketch of the proof is provided in Appendix D. The first result evaluates the tax
formula (32) that reflects planner’s utilitarian concerns for the workers in the right tail
of the productivity distribution, and the concave shape of the utility function. The limit
aligns with the case when the tail is exactly Pareto distributed, since the contribution of the
log-normal component in the right-tail vanishes. The second result restates results shown
in Theorem 3.4.

Finally, the third result follows from the log-normal shape of the productivity distri-
bution at zero. To understand the reason why the marginal tax rate is zero irrespective of
the presence of misspecification concerns, we note that because the marginal utility of con-
sumption is infinite at zero consumption, the planner optimally provides a finite, strictly
positive transfer T (z) to workers with zero productivity z = 0. Such a transfer has infinite
marginal social value against a finite social marginal cost of resources. Consequently, I/ (z)

is finite, and the distortion m (z) in (31) is bounded and bounded away from zero in the
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Figure 4: Worst-case distributions f(z) for alternative levels of misspecification concerns given by

6. The black solid line for = oo corresponds to the rational benchmark for which f(z) = f(z).
Thin grey lines represent the densities for the sizes of entropy balls constructed using the empirical
procedure from Section 4.2 for alternative time periods. The orange line for § = 16.312 is the case
with the smallest misspecification concern, while the red line for § = 9.254 represents the median
case.

neighborhood of z = 0. Since, as we show in the appendix, the limiting tax for the left tail
is zero in the rational model, a perturbation of the tax rate formula (32) by a finite m (z) will

not alter the zero limiting marginal tax rate in the model with misspecification concerns.

4.4 Worst-case distributions and marginal tax rates

Figure 4 plots the worst-case productivity distributions f (z) across different choices of
the parameter 6. The black line with an infinite entropy penalty 6 = co corresponds to
the rational case for which f(z) = f (z), with subsequent lines representing increasing
misspecification concerns as 0 decreases.

The left panel shows the distribution in the proximity of the mean under the benchmark
model, which is equal to E [z] = 1, while the right panel focuses on the broad range of
productivities z and plots the density in logarithms to highlight distortions in the tail. In
the log-log plot in the right panel, the straight black line in the right tail reflects the Pareto
shape of the right tail under the benchmark distribution f (z).

As is apparent from the right graph, misspecification concerns lead to sharp distortions
in the right tail of the distribution. This is in line with theoretical results from Section 3 that
show that an arbitrarily small amount of misspecification concerns leads to a thin-tailed
worst-case distribution. The parameter 6 determines the range of incomes at which the
concerns start to manifest themselves in a more pronounced way.
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quantiles \ 6 0o 100 16.312 9.254 1

7(0.01) 0262 0261 0259 0258 0.227
7(0.05) 0349 0348 0345 0343 0.297
7(0.25) 0537 0536 0530 0525 0438
7(0.50) 0748 0.746 0734 0724 0.581
7(0.75) 1.098 1093 1.067 1.045 0.784
7(0.95) 2317 2287 2158 2062 1.267
7(0.99) 4815 4678 4158 3.823 1.864
7(0.999) 13713 12.657 9.776 8391 2.993

Table 1: Quantiles of the distribution of productivity z under the worst-case distribution for alter-
native values of 0. The case § = oo corresponds to the rational case.

0,8 T T T TTTTT =T T 11117 T T T TITT] T T T 11117 T T T TTTT] T T T TITT] T T 1117
| |—f0=0 |
--- 6 =100
6=16312( LTI
0611 __§— 9254
0=1

0.4

T'(y)

0.2

0
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y

Figure 5: Optimal marginal tax schedules for alternative levels of misspecification concerns. The
dashed line corresponds to the limiting marginal tax rate for the rational case.

At the same time, the center of the distribution gets noticeably distorted only as mis-
specification concerns become substantial (¢ = 1), and the left tail remains essentially
undistorted. These conclusions are also confirmed in Table 1 that tabulates the quantiles
of the productivity z under the alternative worst-case distributions f(z)

Figure 5 shows the optimal marginal tax rate schedule for alternative levels of the
model misspecification concerns. The solid black line represents the marginal tax rate for
the rational case. In line with the literature, since the underlying productivity distribution
exhibits a Pareto tail, the asymptotic tax rate lim;_,. T’ (y (z)) is positive and quantita-
tively large, at 71.4%.'° The tax rate asymptotes to zero as z — 0, in line with Lemma 4.1.

When misspecification concerns are present, the shape of the optimal tax schedules

19Tn Heathcote and Tsujiyama (2021), the computed marginal tax rates in the right tail asymptote to zero
because they truncate the distribution and focus on numerical solutions for the truncated case.
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Figure 6: Growth rates of optimal marginal tax schedules, dlog T’(y) /d logy, for alternative levels
of misspecification concerns. The dashed black line corresponds to the theoretical limit, equal to
-1/2.

looks notably different. While for wage levels around the mean (E [z] = 1), the optimal
marginal tax looks similar to that under the rational case, it starts departing quickly for
higher wage levels. For the benchmark case of § = 16.312, the marginal tax peaks at
57.5% for wages equal to 7.5 the average wage (arg max, T’ (y) /E [y]), and starts declining
thereafter.

Theoretical results from Section 3 show that not only should marginal tax rates decline
to zero as z — oo, but the asymptotic rate of decline is also pinned down. From Lemma 4.1,
given that p = 1, we have that the rate of decline should converge to —1. Figure 6 verifies
this result numerically. The solid black line, representing the rational case, is above zero
and converges to zero, reflecting an increasing marginal tax rate schedule converging to a
positive limiting tax rate. On the other hand, across all levels of misspecification concerns,

the decay rate indeed asymptotically converges to the theoretically predicted value.

4.5 Insurance provision and budgetary concerns

The decision problem of the robust planner trades off utilitarian and budgetary concerns,

reflected in the worst-case distortion

() =mexp (5 U )+ T (4 2)). 69
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Figure 7: The likelihood ratio m(z) = f(z)/ f(z) representing the distortion of the worst-case dis-
tribution relative to the benchmark distribution, plotted for alternative levels of misspecification
concerns given by 6. The case 8 = oo corresponds to the rational benchmark for which m(z) = 1.

On the one hand, the planner is concerned that there are more agents in the left tail of the
productivity distribution, who receive low utility I/ (z) and generate low (in fact negative)
net tax revenue T (y (z)). The planner can diminish the utilitarian concerns by providing
more insurance, thus raising i/ (z) and lowering m (z). This insurance comes in the form
of transfers, and hence at the cost of a lower net tax revenue T (y (z)). On the margin,
the optimal tax schedule designed by the planner trades off a unit of tax revenue at the
marginal social value y against a unit of consumption transferred to the low-productivity

agent at marginal value U/’ (z).

Any transfers provided to low-productivity workers must come from those in upper
parts of the productivity distribution. As shown in Section 3, when the utility function
is sufficiently concave (p > 3), budgetary concerns dominate the shape of the distortion
(38) in the right tail of the productivity distribution. Following the tax formula (32), the
planner chooses the marginal tax rate for a particular z as a result of a tradeoff between the
tax distortion imposed on the f(z) agents at z against the social benefit of raising lump sum
revenue from the (marginal utility weighted) mass 1 — F (z) of agents with productivities
above z. Since the misspecification concern increases with z, the planner fears that the
mass of agents above z is lower relative to agents residing exactly at z who are distorted

by the marginal tax at z, and hence opts for lower marginal tax rates in the tail.

This desire to lower marginal taxes at the top combined with concerns about the higher
prevalence of low-productivity and lower prevalence of high-productivity workers in-
creases the marginal social value of a unit of tax revenue yu, pushing toward lower overall

redistribution.
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Figure 8: Labor supply under optimal tax schedules (left panel), and consumption as a function of
income (right panel) under alternative levels of misspecification concerns.

Figure 7 represents these implications quantitatively by plotting the shape of the dis-
tortion m (z) = f (z) /f (z). The plots reveal that in the left tail of the productivity distribu-
tion, the utilitarian and budgetary concerns reflected in the shape of m (z) are minimal for
the benchmark choice 6 = 16.312. Without any redistribution scheme, lim,_,o U (z) = —oo,
and consequently lim, g m (z) = oo, as the utilitarian concerns about the low-productivity
workers dominate. However, the optimal tax schedule insures the low-productivity work-
ers sufficiently, leading to bounded and quantitatively modest distortions of the left tail.
Only when the misspecification concerns are substantial (§ = 1), the planner’s concerns
about insufficient tax revenue to insure low-productivity workers start increasing more

notably.
On the other hand, in the right tail of the productivity distribution, the concerns about

loss of tax revenue from high-productivity workers are severe. The planner, concerned
about the distortion of the labor supply at the top, lowers marginal tax rates asymptoti-
cally to zero, yet the marginal tax rate declines sufficiently slowly to make the tax revenue
T (y (z)) from each high-productivity worker grow without bound as z — oo. Conse-
quently, the planner’s concerns that these high-productivity workers are less prevalent
than assumed under the benchmark distribution also grow without bound, leading to
lim; e m (z) = 0.

The left panel in Figure 8 depicts the labor supply under the optimal tax schedule
for alternative levels of the misspecification concerns. The lower marginal tax rates when
misspecification concerns are present generally increase labor supply in the right tail of the
productivity distribution. The increase in labor supply combined with a lower tax burden
translates to higher consumption leves for high-productivity workers, as shown in the
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moments \ 0 o 100 16.312  9.254 1

E [2] 1.000 1.000 1.000 1.000  1.000
E[z] 1.000 0987 0944 0914  0.657
E [y] 0.823 0827 0841 0850 0918
E [y] 0.823 0815 0787 0768  0.579
" 1215 1227 1270 1303  1.727
To —0.315 —0.308 —0289 —0276 —0.178
max, T'(y) (%) 714 645 575 543 352
argmax, T'(y) c 15549 6305 4856  1.993
E [T] 0.000 0007 0.027 0039  0.110
E[T] 0.000  0.000 0.000 0.00  0.000
E [T] /E [y] 0.000 0008 0032 0046  0.120
E[T] /E [y] 0.000  0.000 0.000  0.00  0.000

Table 2: Moments under the benchmark distribution f(z) and the worst-case distribution f(z)
under optimal tax schedules for alternative values of 6.

right panel of Figure 8.
In the left tail of the productivity distribution, the effects on labor supply are much

more modest. The increase in labor supply, which manifests itself only for high levels
of misspecification concerns (6 = 1), is driven by the wealth effect of a lower lump sum
transfer Ty = T (y(z)). At the same time, the right panel shows that low productivity
workers who produce little output are well insured by the optimal tax scheme, regardless
of the level of misspecification concerns.

Table 2 summarizes these insights in the form of moments under the benchmark and
worst-case distributions. The benchmark mean E [z] is identical and normalized to one
across parameterizations since the distribution f (z) is exogenously specified by the cali-
brated EGM distribution in Section 4.1. The worst case means [ [z] decrease as misspec-
ification concerns increase, reflecting shifts toward more adversely slanted productivity
distributions subjectively perceived by the robust planner.

Objective means of the income distribution E [y (z)] = E [zn (z)] increase with increas-
ing misspecification concerns, as lower marginal taxes increase labor supply, plotted in the
left panel of Figure 8. Nevertheless, the mean of the income distribution under the worst

case distribution, E [y], declines.

As mentioned above, since increases in misspecification concerns are manifested in
increases in the marginal social value of tax funds y, reflecting planner’s fear about more

severe scarcity of tax revenue.

Finally, the bottom part of Table 2 reports statistics for the tax schedule. The lump
sum transfer to the lowest productivity worker, Ty = T (y (z)), expressed as a share of
average income E [y], is roughly 33-37%, and rather stable across a range of the values of
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the parameter . Only when misspecifications concerns and the fear of lack of tax revenue

worsen severely, the transfer is reduced more substantially.

While the lump sum transfer to the lowest productivity worker is rather insensitive to
the degree of misspecification concerns for a range of values of 6, the peak marginal tax rate
changes substantially. For the case without misspecification concerns, the top marginal tax
rate asymptotes at 71.4%, for the benchmark calibration 6 = 16.312, the marginal tax rate
peaks at 57.5% at an income arg max, T’ (y) corresponding to 7.5 of the average income,
and starts declining thereafter.

Since the planner’s optimization problem involves running a balanced budget under
the endogenously determined subjective distribution, and we chose G = 0, this implies
[E [T] = 0 for all choices of 8. However, the tax revenue under the benchmark distribution
generally differs from zero. Since the worst-case distribution is pessimistically biased,
then, compared to the benchmark distribution, the planner underestimates the amount
of tax revenue the given tax schedule raises under that benchmark distribution. For the
preferred choice 6 = 16.312, the extra surplus generated by the tax policy is about 3.2% of

total labor income in the economy:.

If we interpret the benchmark distribution as the true productivity distribution un-
der the data-generating measure, then the optimal tax policy of the robust planner indeed
generates this surplus. This raises the question of what the planner does with the surplus
resources. Our model is static so it does not speak to intertemporal tradeoffs but it is plau-
sible to envision a dynamic extension of this model in which the planner also manages
the accumulated debt or assets over time. Hansen and Sargent (2012, 2015), Kwon and
Miao (2017), Ferriere and Karantounias (2019), or Karantounias (2023) are important con-
tributions in this direction that continue optimal dynamic policies in representative agent
frameworks in which the planner is ambiguous about the stochastic path of the aggregate
economy. Introducing dynamic debt management into our framework faces novel chal-

lenges but is a natural way of moving forward.

5 Multidimensional Robust Taxation

A crucial input for the design of optimal taxes, in addition to the skill distribution, is the
value of labor supply elasticity. However, it is a well-known in the public finance literature
that substantial variation exists in the values of labor supply elasticities and the elasticity
of taxable income employed across various applications. !! These estimates vary based on
the samples considered and the econometric methods applied. Also very little is known

1Saez, Slemrod, and Giertz (2012) provide a survey on the elasticity of taxable income.
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about how elasticities vary with income.!?

In this section, we formalize this lack of knowledge as the planner’s concerns regard-
ing the joint distribution of labor supply elasticities and productivity, and design nonlin-
ear taxes that are robust to such misspecifications. We proceed in three steps. First, we
propose a modification to the entropy penalty utilized to construct a set of alternative one-
dimensional distributions. Second, we slightly modify preferences to ensure that we can
isolate the uncertainty over labor supply responses to tax reforms from uncertainty in the
level of hours worked. Finally, we study an application to revisit the quantitative relevance
of this source of uncertainty.

5.1 Modified penalty

Household type s = (7,z) is two-dimensional, comprising a parameter 7 that influences
labor supply and another parameter z that determines the hourly wage rate. Types are
distributed according to a joint density f (v, z), which remains private information to the
households. The government is concerned that the joint distribution f (v, z) is misspecified
and is contemplating a set of alternative distributions f (7,z). As previously discussed, we
can characterize the set using a penalty function.

Factor the joint density f(7,z) into a marginal for skills f7(z) and conditional f7/*(y).
Using two positive scalars, (6,,06.), we postulate a penalty P (f, f|6,,6.) for the multidi-

mensional case as follows:

P (f,f16,,6:) =0, [ € (7 (12,777 (| 2)) m(2) £ (2) do + 6.8 (£, F)
:97/ </m('y|z)lnm(’y|z)f7|z(’y|z)d'y) m(z)fz(z)dz+62/m(z)lnm(z)f(z)dz,

where £(-, -) is the relative entropy.
_ Wedenote m (7,2) = f(v.2)/f(v,2), m(v|2) = (v 12)/f1% (7 |2), m(z) =
f%(z) /f* (z) as the likelihood ratios btween the benchmark and the alternative distribu-
tions of (1, z), v given z, and z, respectively.

LetU (77,z;T), and Y (7, z; T) be the indirect utility and the income of household type
(7,2z) under tax policy T. Using the penalty P, the minimizing problem given tax policy T

1S

12A wide range of values is reported in the literature. Chetty et al. (2011) conduct a meta-analysis on the
values of labor supply elasticity in both micro and macro studies, finding that a point estimate of the Frisch
labor supply elasticity from micro studies is 0.54 for intensive margin and a point estimate for macro studies
for aggregate hours is 2.84. Neisser (2021) also conducts a meta-analysis on the value of the elasticity of
taxable income and finds estimates vary across regression techniques, sample restrictions, countries and time.
Lockwood, Sial, and Weinzierl (2021) elicit the belief on the distribution of the value of the elasticity of taxable
income among public economists by running a survey.
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min [ ¢ (7,2 U (5 T)m (12) f (1,2 d (1,2 4V ([ Y s Dm(,2) £ (2 (,2)) + P (7, fley ),
s.t. /m (z) ffF(z)dz=1 (39)

[mr 127 ([ 2)dy =1 v

The optimal tax problem is defined as the maximization of (39) over tax functions T.
The conditions on the likelihood ratios m (7 | z) and m (z) imply that the likelihood ra-
tio m (v, z) satisfies [ m (y,z) f (7v,z)d (7,z) = 1.

The modified penalty term P (£, f|0,,6.) satisfies the following properties.

Lemma5.1. 1. When 6, = 6, = 0, P (f, £16,,6.) reduces to an entropy penalty over the
joint distribution over (v, z)

P (f.f16,6) = 0¢ (£, f) -

2. When 6, — oo, the minimizing probability measure is not distorted conditional on z,
m(y|z) = 1forall (v,z). Similarly, as 6, — oo, the minimizing probability measure
is not distorted in terms of z, m (z) = 1 for all z.

Proof. See the Appendix. m

Lemma 5.1 shows that the modified penalty term P (f, f|6,,6.) generalizes the usual
relative entropy penalty by allowing for flexible weights 6, and 0., on the marginal distri-
bution of productivity z, and the conditional distributions 7%, respectively. This flexibility
allows for different degrees of concerns over different parts of the joint distribution. For
instance, a high value of 6, and a low value of 0., describes a planner who is more con-
fident about wage data but less sure about estimates of elasticities. In the application,
we will use a limit 6, — co to understand how much the uncertainty about labor supply
elasticities affects the optimal tax schedule.

5.2 Hours versus elasticity

. . . . . 14\ 1P
Consider a variant of the preferences discussed in Section 4, ﬁ <c A ;) . For a

differentiable tax function T, the optimal labor supply is determined by

yn" =z (1—T (zn))
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From the previous expression, we can see that the parameter y matters for both the level
of hours worked and the responsiveness of hours to changes in taxation. Therefore, un-
certainty about the parameter 7y confounds uncertainty about the responsiveness of labor
supply and the level of hours. We are particularly interested in the responsiveness of labor
supply to tax changes; and propose an adjustment to the preferences for labor supply to
isolate that concern.

Specifically, we consider the following thought experiment. Imagine a government
contemplating a tax reform AT which changes the tax function T® — T° + AT and is con-
cerned about how the labor supply of various individuals will respond due to uncertainty
about the distribution of 7. A desirable feature of how one can use the robust approach to
model this concern is a requirement that the size of worst-case distortions should be small
if the size of the reform is small, or for any level of z,

AT =0 — m(y|z) = 1.
To do that, we postulate the following utility function of worker with type (1, z).

n1+'y
1+

S <c—‘1’(%2>

1—p
—p > +A(7,2). (40)

Our goal is to derive restrictions on the shifters ¥ and A that guarantee m (y|z) = 1
when AT = 0. The following lemma summarizes the outcomes for the separable constant
elasticity formulation that we throughout in paper.

Lemma 5.2. Suppose the utilitarian planner is endowed with a concave GHH utility utility func-
tion (40), the status quo tax policy T° and let ¢ (z; T) , 7 (z; T) the optimal choices of workers with
utility

1 B nl+’7 )1_.0

i(z;T) =  max <C—l[)1+7

41
c<zn—T(zn),n 1-— Y ( )

for some positive scalars 1 and y. There exists labor disutility shifter ¥ (y, z) and the utility shifter
A (7, z) so that when T = T°, we have the following:

1. The optimal choices of workers given the tax policy T, C (y,z; T), N (v, z; T) and the optimal
level of utility U (v, z; T) do not depend on vy, and for all 7/, z,

C(v,zT) =¢c(z T
N (v, zT°) = (zT°)
U,z TO) =il (z; TO) .

2. The minimizing probability measure given productivity level z is not distorted, and for all
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Y,z
m(ylz) = 1.

Proof. See the Appendix. m

6 Application

Utilizing the modified penalty and labor supply preferences, we assess the impact of un-
certainty regarding labor supply responsiveness on the shape of the optimal tax schedule.
The key choices are the specification of the benchmark distribution f(1y, z) and the values
of penalty parameters (6,0, ).

6.1 Calibration

We use the modified GHH preference introduced in the previous section with a curvature
parameter p and the inverse of the elasticity of taxable income 7 '°. The curvature p is kept
to 1 as in the one-dimensional case with the separable utility.

Given the lack of evidence on the correlation between productivity and labor supply
elasticity, we assume that in the benchmark distribution the elasticity of taxable income
v~ 1 is independent of z, i.e., f (7,z) = f"? (v | z) f* (z) and f7 (| z) does not depend
on z. The benchmark marginal distribution of productivities f* (z) is modeled as exponen-
tially modified Gaussian (EMG) with the same parameters as in Section 4.

The benchmark distribution of the elasticity of taxable income is obtained from the
survey of Lockwood, Sial, and Weinzierl (2021) who conduct a survey on the belief on the
value of the uncompensated elasticity of taxable income among economists. The survey
reveals the range of values from less than 0.1 to more than 2.0, indicating the long-standing
substantial disagreement on the value of the labor supply elasticity. We use a discretized
version of their histogram of survey responses and construct f7/7(«) which is reported in

Figure 9.

Two penalty parameters 0, and 0., are set as follows. For the exercise in this section, we
set 8, — oo, and from part 2 of Lemma 5.1, any alternative distribution f satisfies f* (z) =
f*(z). By doing so, we focus on studying concerns about labor supply responsiveness
and isolate results from those in Section 4 that studied the consequences of distorting the

productivity distribution.

13With the GHH prefernce, 1/ is the elasticity of taxable income (ETI) if the marginal tax rate is constant.
In general, the ETI also depends on the slope of the marginal tax schedule.
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Figure 9: Benchmark distribution of elasticity of taxable income. We use a discretized distribution
that is constructed using the histogram reported in Lockwood et al. (2021)

Given the remaining parameters, our model suggests that the worst-case joint den-
sity is skewed so that high-income individuals are more likely to have higher elasticity of
taxable income, and higher average values of y~!. The degree of this distortion is influ-
enced by the value of parameter 0,,. We calibrate it to ensure that the worst-case model
produces the elasticity for high-income earners reported in Rauh and Shyu (2024).1* We
also discuss results for higher and lower values of 6, surrounding our preferred estimate.
Figure 10 plots the average of the 4 ~! given productivity z under the planner’s worst-case
model against the mean of before-tax earnings y given productivity z. As discussed, in the
worst-case model, the average value of the elasticity is higher than in the rational model
(represented by the bold blue line) for higher-income earners. Rauh and Shyu (2024) es-
timates the elasticity of taxable income between 2.6 and 3.0 for taxpayers with an annual

income of five million USD. Targeting those values, our calibration strategy implies 0., = 5.

To compute the non-linear tax schedule, we restrict the space of tax functions. Char-
acterizing a fully nonlinear tax function within a multidimensional private information
framework using the Mirrleesian approach presents significant challenges (see, for exam-
ple, Golosov and Krasikov (2023)). Instead, we search for a tax schedule T within a flexible

14Rauh and Shyu (2024) is one of the few studies that estimates labor supply elasticities for high-income
earners with credible identification strategies. They use micro data from the state of California and study the
labor supply response to Proposition 30, a 2012 measure that increased California marginal tax rates by up to
3 percentage.
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Figure 10: Mean elasticity of taxable income in worst-case models for alternative levels of multidi-
mensional misspecification concerns

parametric class of functions such that the marginal tax rate T' (y) is expressed through
cubic basis functions of Iny, featuring N knots {(Iny;, ;) };_; .. \, where T’ (y) remains
constant outside the range of the knots. We choose N = 3. In Appendix F, we discuss
the trade-offs involved in choosing N, as well as benchmarking the spline approximation
against the Mirlees solution for the one-dimensional case.

The remaining parameters are consistent with those outlined in Section 4. We set T? =
0 as a baseline and present results for alternative choices of the status-quo tax function in
the Appendix G.

6.2 Results

Figure 11 plots the optimal marginal tax schedules for various values of 0,,. Low values
indicate higher level of concern about the conditional distributions of y. In the figure, we
observe that increased concerns result in lower marginal tax rates for high-income earn-
ers. At the calibrated value 6, = 5, the top marginal tax rate T’ (y) at optimum is 14.0%,
whereas in the rational model it is about 66.5%, leading to a substantial 52.5% decrease in
the marginal tax rate at the top.

The economic mechanisms leading to lower tax rates in this context are analogous to

those observed in the case of one-dimensional uncertainty regarding the productivity dis-
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tribution, as discussed in Section 4. In that scenario, the robust planner was concerned
about the shape of the right tail of the distribution and the ability to raise adequate rev-
enues. As a result, the planner placed less emphasis on imposing distortions on high
earners and reduced the top tax rate. In the situation examined here — where uncertainty
pertains to the distribution of the elasticity of taxable income — the robust planner becomes
wary that the costs of distorting high-income earners may be too large. To mitigate this
risk, the planner adopts a cautious approach and lowers the top tax rate. In both cases,
the economic mechanism is fundamentally similar, relying on the idea that tax revenues
are concentrated, and concerns about misspecification arise from the possibility that those

revenues may be difficult to secure.

Contrasting the worst-case distribution of ~!|z with the benchmark further clarifies
this intuition. Recall that in the benchmark distribution, we assumed that ¢! was in-
dependently distributed with respect to productivities z. In contrast, the worst-case joint
density features an endogenous positive correlation between productivities and elastici-
ties. Interestingly, the resulting income distributions under the benchmark and the worst-
case distributions do not differ significantly. As shown in Figure 12, the Pareto tail of the
income distributions remains largely unaffected by the value of 6,,. This occurs because in-
come distributions are primarily driven by the distribution of productivities, and we have
set 0, = oco. Consequently, the robust planner preserves the marginal productivity distri-
bution f*, and the income distribution retains its core properties. A key takeaway from this
example is that one does not need to rely on a thin-tailed worst-case income distribution
to justify lower taxes.

In Table 3, we report additional moments and summarize how simulated outcomes
vary across different values of 6,. As the penalty weight 0., decreases from 100 to 1,
the mean of the elasticity under the worst-case scenario for highly productive workers
E [v~!| z > z] also goes up. This concern is particularly evident among highly produc-
tive workers. Other outcomes such as average output, total transfers, and the marginal

value of public goods remain largely unaffected.

7 Conclusion

The design of optimal tax schedules crucially depends on assumptions about the under-
lying distribution of types of taxed individuals. Despite affluently available data, the dis-
tribution of types over a fiscal planning horizon remains a complex task, especially in the

tails where sample sizes are extremely small relative to the time-series variation.

In this paper, we tackle this uncertainty about the underlying type distribution by
studying optimal taxation in the presence of concerns that the underlying distribution
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Figure 11: Optimal marginal tax schedules for alternative levels of multidimensional misspecifica-
tion concerns. The status quo tax policy is no-tax-no-transfer, T (y) = 0.

moments \6,, co 100 10 5 25
E [z] 1.00 100 1.00 1.00 1.00
E [y71] 059 059 059 059 0.60
E[y'|z>z] 05 05 059 059 0.59
E[y'|z>z] 059 112 275 296 3.00
E [y] 1.03 107 112 115 118
E [y] 1.03 101 1.00 1.00 099
1 137 144 155 161 1.68
To 042 -039 036 -034 -0.32
E [T] -0.00 002 004 004 005
E [T] -0.00 -0.00 -0.00 0.00 -0.00
E [T] /E [y] 0.00 0.02 003 004 0.04
E[T] /E [y] -0.00 -0.00 -0.00 0.00 -0.00

Table 3: Moments under the benchmark and worst-case. The productivity level Z is minimum z
such that y | z > 100E [y] given the benchmark distribution with T% = 0.

is misspecified. The robust approach we employ allows us to avoid making parametric

assumptions about the structure of uncertainty, and instead focus on nonparametric mis-

specifications of the underlying type distribution that the planner fears to be most conse-

quential for the welfare function.
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Figure 12: Worst-case distributions of before-tax income fY (y) for alternative levels of multidimen-
sional misspecification concerns. The status quo tax policy is no-tax-no-transfer, T (y) = 0.

The uncertainty about the distribution of productivity leads to a stark difference in the
optimal tax schedule. We find that marginal taxes should optimally decline to zero, even
when the underlying benchmark distribution has a fat right tail, like in the Pareto case.
Misspecification concerns do not only have a theoretical asymptotic impact, they decrease
marginal tax rates of high-income individuals in quantitatively important ways, against a

modest decrease in redistribution toward low-productivity workers.

We further study the implications of uncertainty about the elasticity of taxable income
in designing the optimal tax schedule reform. When the robust planner faces additional
concerns about the elasticity of taxable income, the worst-case scenario features a positive
correlation between the elasticity and productivity: the revenue is disproportionately col-
lected from high-income earners, and the tax reform may fail to collect extra revenue from
the high-income earners due to potential high responsiveness to the tax reform. Antic-
ipating this risk, the planner optimally reduces an increase in the marginal tax rates for

high-income earners, even without concerns about the distribution of productivity.

Important directions are left for follow-up work. A natural candidate involves a dy-
namic extension where optimal taxation of heterogeneous workers is combined with an
optimal debt management problem. Another prominent application in which uncertainty
about the underlying distribution is substantial involves taxation of wealth. Insights de-

veloped in this work will help analyze such cases as well.
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Appendix

A Application of the minimax theorem

In this appendix, we show the validity of exchanging the order of optimization in a version of
the planner’s problem from Section 2.1. We focus on the discrete-type formulation with I types,
equal Pareto weights, separable isoelastic household utility, and linear utility from government
expenditures

I , I
max min ) 7mm; (u (c;)—wv (yl>) +7G+0)_ mym;logm;, (42)
{ciyitin X {m} €Y 2 Zi i=1

subject to the incentive compatibility constraints

and Radon-Nikodym derivative constraints
I
Y mim; =1, m; >0, ie{l,...,1}, (43)
i=1

where {7; }le is the benchmark probability distribution, and government expenditures G are equal
to the net tax revenue

I
G=Y mm;(yi—ci).
i=1

The functions u (c) and v (y/z) have the isoelastic form from (27). To apply a version of the mini-
max theorem (Sion (1958)), we need to establish suitable compact and convex subsets X and Y of
R! for the choice variables, convexity in the minimizing variables, and concavity in the maximizing
variables.

It is convenient to write the problem as a function of maximizing controls #; and v; representing

utility from consumption and disutility from labor, respectively:
I I
max min Z Tim; (ui — v+ vzio ! (v;) —ou ! (ui)) +6 Z mtym; log m;
{w o} €X {m;}i_ €Y =1 i=1
subject to linear constraints
Zj

1+
ul‘_vizuj—<z> Uj/ 11]6{1111}/ (44)
1

and the constrains in (43). This problem is strictly concave in {u;, vi}iI:l and strictly convex in
{mi}le, on a convex set X imposed by the linear constraints (44), and on a convex set Y imposed
by linear constraints on ; in (43). It remains to bound X and Y to make them compact.

Observe that u; € U where U = [— (1 —p)_l,oo) forp < 1, u; € (—o0,00) for p = 1 and

45



U= (—oo, -(1- p)fl) for p > 1. Further, v; € V = [0, 00). Denote
U; (u;,v;) = u; — u! (u;) + vzo ! (v;) — v,

and notice that U; (1;,v;) is bounded from above, strictly concave, and, whenever u; converges to
one of the open boundaries of U or v; converges to the open boundary of V, we have lim U; (u;, v;) =
—oo. Therefore, for any U € IR, the upper countour set

Wi = {(”irvi) Eﬁxv: ui (”i/vi) ZQ}

is convex and compact. We construct the compact convex set X as X =W x ... x W, for a suitable
choice of U.

Fix a ¢ > 0 and utility allocation u; = u (¢), v; = v (0) = 0. This allocation satisfies all con-
straints in (44), and hence is feasible. Further denote

I
u = Z u(€),v(0)) =u(c)—ve

U = maxmaxU; (u;,v;).
1 U0

-1
Uz(minﬂ,«) (ﬁ—s—(l—minm)ll), e>0.
1 1

We also note that for a given allocation {u;, vi}iI:l, the optimal distortion, the discrete-type coun-

Then set

terpart to (13)), can be written as
_ 1
m; = mexp <—9Ul- (u;, vi)) , (45)

i.e., it is decreasing in U; (u;,0;), and m; = 1 for the feasible allocation {u (¢),v (0)},_,, since
U (u(¢),v(0) = U.

Take any allocation {u;, v;} ZI 1 € Xand, without loss of generality, order indices i by increasing
U; (u;,v;). Then first ] > 1 indices are such that U; (1;,v;) < U and hence (ul, i) € W;. Further,
the associated m; given by (45) are decreasing in 7, and the distribution {711} 1 given by 7t; = 7r;m;
is first-order stochastically dominated by {7'(1}1:1. Then

Z mim;U; (u;,0;) Z il (ug,0;) = Y il (ug,05) + Y wil; (u,07)

i=1 i<] i>]

< anu+2nlu<mmmu+ <1—m1n7rl> U=U-e<U.
i<J i>]

The first inequality follows from the fact that {nl} _ is first-order stochastically dominated by
{r;}!_,, the second inequality from the fact that for i < J, U; (u;,;) < U and for any i, U; (u;, ;) <
U, and the third inequality from the fact that ] > 1 and U < U. The allocation {u;, v,«}{zl & X thus
cannot be optimal, and we can exclude it from the optimization problem.
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Finally, since X bounds all U; (u;, v;) from below by U and from above by U, all m; given by (45)
are bounded away from zero. Since m; are also bounded from above by (min; ni)fl, there exists a
6 > 0 such that we can restrict the set Y to the compact convex set

Y:{(ml,...,ml):mi € [5, <miin7'cl->1]}.

This completes the verification of conditions under which the order of optimization in (42) can be
exchanged.

B Derivation of optimal tax formulas

In this appendix, we derive optimal tax formulas from the optimization problem

max Inrgr(} / Y (z < ()> dz+9/ z)logm (z) f (z) dz
subject to the IC constraint
au _ y(2)\y ()
i Un(c(z), . ) 2 (46)
and the budget constraint i
6= [ W@ -c@mE /G 7)

Treating indirect utility I/ as the state variable, A as its co-state, and y and m as control variables,

we can form the constrained Hamiltonian

H (0, y,m,2) =p () (2) m (2) £ (2) + O (z) logm (2) £ (2) — xm () f (2
2@ (e@ L) D ) - @) £

Here, x and y are multipliers on the constraints [E [m] = 1 and (47), respectively, and c (z) is defined
implicitly from the definition of the utility function

asc(z) = C (U (z),y (z)). The optimality condition with respect to output choice y (z) is

0= Hy = [1-G (U (2) 5 )] m(3) f () - A () U (CU @), 1) 5 )
22 [t (€@ @y @), Y ) 6 @ e, @)+ i (C 2w ), L) 1D,

with respect to the distortion m (z) is
0=Hpu =19 (2)U(2)f(2)+0[logm(z) +1] f(2) =xf (2) +ply (2) = C (U (2),y(2)] f (2), (49)
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and the costate dynamics restriction yields

dA (z)

M) Hy = [ U (2,5 2) ~ p ) () £ () + (50
2@ U (cw 0@, 1) ey @) v

The transversality condition is
AZ)U(2) =0,

and since the problem is unrestricted at the left end of the type distribution (the choice U (z) is
unrestricted), we also have A (z) = 0.

Condition (49) can be used to express the distortion m (z):

m ) = exp (1) ewp (~5 (W EUE +uly(2) - CUE 1))

The Lagrange multiplier yx is solved for from the restriction [E [m] = 1 as a normalization constant,
which then shows up as m = exp (x/6 — 1) in (13). Integrating up condition (50) over the range of

types (z 2),

/ZZ d};( )d =A(2) —A(2) =0:H/qu(U(z),y(z))m(z)f(z)dzf le(z)m(z)f(z)dz

+ [ 2@ e (cue e, ) e v

we solve for the Lagrange multiplier y:

FEy@m @) f (=) dz— [2A(2) Une (CU (), (2)), L2
JiCu U (2),y(2)m(2) f (z) dz

NG
<
&
(@)
-
=
INg
<
N
N—
<
N
QL
N

‘u:

This Lagrange multiplier represents the marginal social value of public funds to the planner.

With an expression for y at hand, we solve for A (z) forward by integrating (50) on (z,z). For
that purpose, denote the terms in (50) as follows:

Hus (2) = uCu (U (2),9 (2)) f (=
Hu (2) = Upe (c U(2),y(2),

)= (z
y(Z)>

z

m(2) f (2)
@) ey @ @2),y().

72

)
y

The term Hy y (z) is only present when preferences U (¢, 1) are non-separable. Then rewrite (50)
as

A'(z) = Hy,s (z) + A (z) Hun (2) .

This equation has the solution

Az /Hus eXP( /HUN d(f) dg.
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To simplify notation, let us simplify the arguments of functions above, and write, for example,

e (2) = U (C U 2), v (21), L2 ).

z

Further, we utilize the following notational simplifications:

A-T' &)= -1 (52)
Cult(@),v(@) = g
1)

Co U (2),y(2) =~

The first equation is the worker’s individual optimality condition for the choice of labor supply and
consumption given a particular tax schedule. The last two follow from the definition of the implicit
function C (U (z),y (z)). With this notation and substitutions, we can reorganize the optimality
condition (48) as

T @] 6= U@ (- T @) [ T E R e

z

It is convenient to rewrite this expression in terms of labor supply elasticities. Denoting w =
(1 — T’ (zn)) z the after-tax marginal compensation for providing labor, and rewriting the after-tax
income as

c=zn—T(zn)=wn+1

to separate the marginal effect w and lump-sum effect I of the tax schedule T (zn), we write the
optimality condition (52) as
U, (wn+1,n)

w:_UC(wn—i—I,n)'

We can then implicitly differentiate to derive the uncompensated and compensated labor supply
elasticities as

i ot
Cdwn —Upy — wUee — 2wl
dn dn\ w dn — Uy
Lf=——-n—|—=¢é"-—w= n .
dw dl ) n dl —Uyy — w2l — 2wl
which then yields
14 & U, +wlsy,
=1 _—
¢ tn u,

Using this result in expression (53), we obtain

T'y(z) _ 1+ Al U(2) (54)
1-T (y(2) e(z) zm(z)f(z) w
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To solve for the Lagrange multiplier y, simplify equation (51), which yields

[ @) - s "t m ) f @)
FEmmm @) F(©)dg

],[:

Finally, the expression for A (z) can be simplified as

Hus (2) [ k —w@ﬂmwﬁc>

U, (2)
1 (z) Upe (2)
zU, (2)

Az) = —/ Hus (C exp< /HUN dg)dg

HU,N (Z) =

For the case of isoelastic separable preferences (27), U, (z) = 0, Hyn (z) = 0, and (1 +¢€*) /& =
1+ . This yields the marginal social value of public funds in the form of inverse marginal utility
formula evaluated under the worst-case distribution

JZp@m @) f(@)dg

@ m@f @
Consequently,
Mo = [y@m@r@ac-p [ o f @) )
= [¢®m@U@Md&U W@} (56)
with

~ z O _ 7
B - [ LOImOFO g g /([fazwv@>

dg,
(&) m(§) f (&) d

where F, (z) is the inverse marginal utility weighted worst-case distribution, and ¥ (z) is the wel-
fare weighted worst-case distribution. The tax formula then simplifies to
T(y(z) _ (1+7)‘T’(Z)—fp(2)1—fp(2)
1-T(y(2)) 1-F(2)  zf,(2)

For the case of quasilinear utility (11), we have fp (z) = F(z), and obtain expression (14). For
concave preferences with zero welfare concern at the top as in Section 3.4.1, we have ¥ (z) = 1,
which yields expression (28). Expression (32) from Section 3.4.2 is obtained by setting ¥ (z) = 1.
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C Proofs for the baseline model

Throughout this section, we restrict our attention to the analysis of the baseline model, analyzed in
Sections 3.1-3.3. In particular, we assume the quasilinear utility function

l+
1497

U(c,n)=c—

an unbounded type space, Z = oo, and restrict our attention to the characterization of the optimal
marginal tax on the interval [2,Z) on which the planner has no utilitarian concerns, ¥ (2) = ¥ (2) =
1, and for which Assumption 2 holds. In the proof of Theorem 3.2, we additionally assume that the
shape of the type distribution for z > 2 under the benchmark model is proportional to the Pareto
distribution.

C.1 Proof of Theorem 3.1
Before proving Theorem 3.1, we start with three preliminary lemmas.

Lemma C.1. Optimal output chosen by individual workers under a given tax scheme T (y) satisfies:

(1+7) 42

T//
e crewenny T(’((()z)))y( )

Y (z) = (57)

Proof. Under the given tax scheme T (y), the optimality condition (1) of a worker of type z for the
special case of quasilinear preferences (11) implies labor supply # (z) given by

which can be rewritten as

Y@ =(1-T(yE) 27 (58)
Differentiating with respect to z:
V(@) = (-T @) 72 T W E)Y @)+ (=T ()
_ 1 Ty () 1+7y(2)
= T ruE? YO
yields
1 T (y(2)) roy 1y (z)
e T Te A LA A
and hence -
/ (1+7)L
(z) = = .
T Ty )
]
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Lemma C.2. Let f (z) and f; (z),i = 1,2 be density functions related by f; (z) = m; (z) f (z) where m; (z)
are strictly positive functions representing changes of measure, and my (z) /my (z) is strictly decreasing.

Then - ~
1—F (2) < 1-F(z2)

zf1 (2) 2f2(z)

Proof. The expression can be rewritten as

1-R@) _ Fm@f@a RGO 59
1 (2) 2 ()£ (2) 2/ @)
_ EREIOX Fm@f@d _1-Be) )
+f () @ )

Lemma C.3. Define

R A T1E)
Then _ /
P =t = T ey @+

Proof. By direct computation:

i1-F@  SOFE@-(1-F@)(fE@+f @)
2

= 2 () (7 )
_ 1 1-F@ 1l FE|_ 1 1,4,
A z+f<z>]_ 90 e

Using f (z) from expression (17), we obtain the last line of the lemma. m

Proof of Theorem 3.1. We restrict attention to z > £ for which the planner’s welfare weight is zero,
P (z) = 0, and for which Assumption 2 holds. In this case, the tax formula (15) is given by

T (y (2)) 1-F(z) 5
——==14+7)—=—==0+7)¢(2). (61)
TG - P T, 1 eE

The single-crossing property (9) implies that y (z) is strictly increasing in z. Since the tax rate
T’ (y (z)) is strictly positive, the tax function T (y (z)) strictly increases in z. This means that m (z)
in (17) is strictly decreasing, and, by Assumption 2, f(z) is also strictly decreasing for sufficiently
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large z. Lemma C.2 then implies that

1-F(z) 1-F(2)
zf (2) zf(z)

(62)

and hence for all z > 2, the marginal tax rate T’ (v (z)) must be strictly lower than the marginal tax

/
rate T, ,

(Yrat (2)) in the model without model misspecification.
An application of L'H6pital’s rule to the tax rate under the model without model misspecifica-

tion implies

_ . 1-F(z) . 1
=1+ Jim, zf (z) tim, _dlogf(z) 4
dlogz

. Tr/at (}/ (Z>)
Nim T

rat (y (Z))

< 0

by Assumption 2. This yields lim; e T,

rat

(v (2)) <1, and combined with T’ (v (z)) < T}z (Yrat (2))
implied by (62), we obtain that for sufficiently large z, T’ (y (z)) must be bounded away from one,
T’ (y (z)) < 1—&r, and ¢ (z) is bounded,

~ 1 T (v (2)) 1 1—&r
PO TT e STy e

Consequently, the optimal allocation formula (73) implies that lim, . y (z) = o0.

From the optimal tax formula (61), we obtain 1 — T/ (y (z)) = (1+ (1+7) 5(2))71, and then
we can rewrite expression (73) as

v(E) = 1+ 1+§E) 7z
Differentiating this expression with respect to z yields
J(z) = -1 (P+ﬂfyﬂlﬂz%l+l+v L4
Taraene@) T T )
1 1 1 ~ , , !
- = =5 2486 (209 - B w @)y @ +5 )]

T+ 1+)$@) T

where the second line uses Lemma C.3 to substitute in for ¢’ (z). Since y (z) > 0, the last bracket
must be strictly positive.

We now show that lim; ;. T’ (v (z)) = 0. Assume that it is not. Then there exists e > 0 such
that for an arbitrarily large z there exists a z > z such that T’ (y (z)) > er. Take such a z for which
T' (y (z)) > er. Since f' (z) < 0, we have

f(z)
f(2)

0<2+$@)@+7—zzﬂwgny@y+z ><2+K¢@+y—gwwmw),
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which yields a bound on zy’ (z):
/ 6 -1\ _
W ()< (z +9+2K, ) — K, (63)

Since, from the result in Lemma C.1, we have that

__ (A+71y()
Zy/ (Z) - T”(y(z))
Y ey Y (z)

<Ky,

we can derive a restriction on T” (y (z)):

(1+7)y(z) — Kyy >§T(1+7)y(2)—1<w.

Ty E) > (1 -T'6E) — Ky (z)

(64)
Recall that we can find an arbitrarily large z for which this inequality holds. Since lim; ;o v (z) =
co, we can find such a z that is sufficiently large to satisfy (14 )y (z) > K7, denote it Z. Then
T" (y (£)) > 0, and, consequently, T’ (y (z)) is increasing at Z. Hence the inequality T’ (y (z)) > er
holds also for z in the right neighborhood of Z, so that the lower bound on T” (y (z)) given in (64)
also holds for z to the right of Z, and this argument can then be extended for any z > Z. This then
implies

Iim T'(y (z)) = T (y(2)) +/

Z—r00

> T'(y(2)+er

which contradicts the bound T’ (y (z)) < 1 — 7. Therefore, the marginal tax must converge to zero,

. / o
lim T (y (z)) = 0.

Is is worth noting that misspecification concerns enter the proof by way of a finite bound on zy’ (z)

in (63). In the absence of misspecification concerns, § = oo, so that K, = oo in (63), and there does

not exist a y (z) for which the right-hand side in (64) is positive, implying we cannot guarantee a

strictly positive lower bound on T” (y (z)). =

C.2 Analysis of the ODE for the optimal marginal tax rate

We now derive and analyze the differential equation (25) that characterizes the behavior of the
optimal marginal tax rate. This will provide intuition for the subsequent proof of Theorem 3.2 in
the next subseection. We restrict our attention to the case when the benchmark type distribution is
Pareto, as the typical case that leads to nonzero top marginal taxes in absence of model misspecifi-

cation concerns.

Lemma C.4. When z is Pareto distributed with shape parameter x under the benchmark model, the worst-
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case density satisfies
d = . d d K P 1
T logf(z) = 7; logm (z) + d—zlogf(z) =gl @)y (2) — (a+1) Z

Proof. Since

we have, by direct computation,

D 1ogF(2) = AT (4 (2)y (&)~ (@ +1) 1

Proposition C.5. When the type distribution under the benchmark model is Pareto with shape parameter
a, the optimal marginal tax T’ (y) obeys the differential equation

T"(y)y _ Ltytan, 71 Lty +a,
B v 07 B LA g T(y)] [G[T Wy =7+ T4y T'(y)|. (65
Proof. We start with the optimal tax formula
Ty(z) _ 1-F(z) _ 5
l—T’(y(Z))_(l_‘_’)/) zf(z) =1+7)¢(2).

Differentiating this formula with respect to z, and using Lemma C.3,

W — {_i_‘f’(z) [i‘gT’ W)Y )+ L (Z)H .

Combining ' (z) terms, we have

T" (v (2)) KB / — a1 _q f'(2)
FEEs a6 vE)] Y@= -1
We can now use Lemma C.1 to substitute out ¥’ (z) and obtain
-1 f(2) '

T"(y(z ))
z

[rwc»u—rwcm 0 7+1wmn()

We can now multiply by the denominator of the compound fraction on the left-hand side, use the
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expression for ¢ (z), and combine terms that contain T” (y (z)):

f1(z) f@)
TTERE T (y(2) Mo 2 TTERE
2 — S8 T — I )y =Lr - - &7 :
{ T T @) oyt @) = § T 6@ @ 7 22T @)
Finally, for the case of the Pareto density,
!/
) (66)

f(2)

Substituting this expression in, we notice that the resulting differential equation does not depend
explicitly on z. Since y (z) is strictly monotonic, we can drop the z argument and rewrite the equa-
tion as a differential equation for T (y), yielding the expression in the statement of the proposition.
[

We now study the phase diagram of the differential equation (65), which we can rewrite as

T (y) = 1-T (y) [2_ 1+7+“T/(y)}_1 [V

2 1+9+a
" Tty LT WPy -+ T (y>].

1+«

The resulting phase diagram is depicted in Figure 1.

Define the right-hand side of the above equation as a function / : [0, 00) x (—00,1) — R:

1-7 {2_1+’y+a

1+7v+a«a
h(y )= T+ TrTe T:|.

-1
B2, _
o e
We study the function on (y, T) € (0,00) x (—o0,1). For simplicity, we assume that

1+7+a

<2,
1+

so that the first bracket in the definition of / (y, T) is never zero for T € (—oo,1). This does not
change any conclusions about asymptotic behavior of the optimal tax.

For a given y € (0, o), we first find the isoclines by solving for T (y) such that 1 (y, T (y)) = 0.
This T (y) solves the cubic equation

1+v+a_

(=7 [Grr P 2 T e ) | =0

with three solutions

2
1 1
oy \/(7 ny) +4kqy

where 7j (v) denotes the root with the minus sign. The isoclines are depicted with the black dashed
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lines in Figure 1. Asymptotically, the differential equation has two steady states

yh_I)I.}osz(y) =0
Jim 7 (y) = 1.

We can order the three isoclines as

T(y) <0<R(y) <BY),

and then, as depicted in the phase diagram,

The result from Theorem 3.1,

lim T (y (2)) = lim T (y) =0,
is a transversality condition that pins down the unique optimal marginal tax function T’ (y). This
optimal path is depicted in the phase diagram with the red solid line with bullet markers. It follows
from the proofs of theorems 3.1 and 3.2 that any other path for T’ (i) that satisfies equation (65)
either converges to one, or becomes negative for some sufficiently high y, both of which violate
conditions that the optimal marginal tax function has to satisfy.

C.3 Proof of Theorem 3.2

Using the insights from the phase diagram, we now turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. We investigate the limiting behavior of the differential equation (65). The
left-hand side of this equation is the elasticity of take-home rate 1 — T’ () with respect to income,
or

1+y+a

Ty T W] (©7)

dlog(1-T'(y)) _ [, l1+v+a, -1 U
dlogy 2 1+ Tw

g T Wy =7+

Since limy ;o (1 — T’ (y)) = 1, if the limit as y — co of the left-hand side of the above equation
exists, it has to be zero. Assume for now that this limit exists. Since limy ;0o T’ (y) = 0, the first
bracket on the right-hand side converges to a positive number as y — co. For the same reason,
the last term of the second bracket converges to zero as well. Hence the only way how the second
bracket converges to zero is when

lim B [T )]y = (68)

In the remainder of the proof, we prove that the limit indeed exists. Assume it does not, so that
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there exists an ¢ such that for any ¥, there exists a y > i such that
’%[T’(y)]zy—'y‘ >e>0. (69)

Further, the analysis of the phase diagram implies that along the optimal path, T’ () monotonically
decreases to zero. This means that T” (y) < 0, and the elasticity in (67) is strictly positive. In
addition, for any arbitrarily small ¢, there exists a jj such that 0 < T’ (y) < e forally > ¥.

Assume first that inequality (69) holds as & [T’ ()] y — v > ¢. Then the elasticity in (67) can be
bounded as

dlog(1-T'(y)) _ =T"()y _ {2_ 1+7+04T,(y)]_1 [€+71+7+a

!
dlogy C1-T(y) 1+ T (y)} <0

which is a contradiction with T” () < 0, given that T’ (y) > 0 and lim;, o T’ (y) = 0.

On the other hand, assume that inequality (69) holds as & [T’ (y)]2 y — 7 < —¢. Then the elas-
ticity in (67) can be bounded as

dlog(1-T'(y)) _ —T”(y)y>_;[;;[T,(sz 7+71T1+“T’(y)}
2

dlogy 1-T (y)
N S _albyta e yldyta e
> 2[9 [T (]/)] Y ’7} 2 1+q9 et 272 144 £T>4/

where the last inequality follows from the fact that e can be taken to be arbitrarily small when we
restrict our attention to sufficiently large y > ¥ > 1. We therefore obtain

3
T"yy<-70-T®).
Asa consequence

el = Sprere o]
< ELa-T )T W+ T )]
%T,<y){,i+(1+2)[ ‘W),

which becomes negative for sufficiently large y because lim, ;0 T’ (y) = 0. Denote this y as y*. This
means that inequality & [T’ (y)]2 y — 7 < —e continues to hold as y increases above y*. Integrating
up the inequality
dlog (1—T (y)) > Zdlogy
fory > y* yields
* € *
(1-T'(y)) —log (1=T'(y")) > ; (logy —logy")

and hence

T () < 1- (;)M (1-T ().

Since y — oo, the right-hand side must ultimately become negative, which violates the restriction
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T' (y) > 0.

We have thus shown that condition (69), which is equivalent to a violation of equation (68),
cannot hold simulatenously with other restrictions on the optimal marginal tax rate. Either the
marginal tax rate function would have to become increasing, or become negative. From the per-
spective of the phase diagram in Figure 1, analyzed in Appendix C.2, if condition (69) holds for
a sufficiently large y, it must be that the given T’ (y) is either on a trajectory above the optimal
path that crosses the T, (y) isocline and converges to one, or becomes negative, crossing the 7; ()
isocline.

Finally, equation (68) implies that the marginal tax rate has to decay as

1
log T' (y) = =5 logy +0 (y)

where o0 (i) converges to a constant as y — 0. Hence, differentiating this expression with respect
to logy, and taking the limit as y — oo, this limit, if it exists, must be given by expression (22). m
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F Approximation of nonlinear income tax function using a cubic spline

In this Appendix, we lay out the optimization scheme of a tax function T a la Ramsey employed
Section 6.

Restricted class of nonlinear income tax function

We restrict a tax function T to a flexible parametric class of functions such that marginal tax rate
T’ (y) is given by cubic basis functions of In y with N knots {(Iny;, ;) },_; ... yand T’ (y) is constant
outside the range of the knots. Specifically, the marginal tax rate T’ (y) is given by

il (v <)
T’ (y) = { CubicSpline <1ny; {(Iny;, Ti)}i:l,--~,N> (y1 <y <yn)
™ (yn <y).

Specifically, we assume that the cubic spline is continuous, differentiable, and smooth at y = y;
fori =2,---,N —1, and is continuous and differentiable at y = y; and yy. We also assume that
T' (y) € [0,1] for any y € (0, c0), given that the Mirrleesian solution is known to satisfy it. The tax
function T (y) is given by

T(y):—tr—i—/OyT’(x)dx

where tr is an intercept of the tax function.

Choice of N

Deciding the number of knots N faces a tradeoff. We find that large N introduces numerical in-
stability in the optimization over the parameter space to maximize welfare. On the other hand,
small N limits welfare gain due to the inflexibility of a cubic spline. Given the tradeoff, we choose
the smallest N so that welfare is numerically close to the level from welfare from the Mirrleesian
solution.

Optimization strategy

A function within this class is represented by a set of knots {(Iny;, ;) },_; ... y and a transfer term
tr. Solving the government problem for the optimal tax function T amounts to search for a set of
scalars (tr, {Inyi},—q .. Ny {Titie ... N)' The transfer term tr is set to clear the government budget

constraint.

The optimization scheme is as follows. We first fix the location of the outer knots, (Inyy,Inyy),
and search for the marginal tax rates at the end knots and the rest of the knots, ({ln Yitico... N—1/1Titiz1,... ,N)
to maximize the objective using the Nelder-Mead algorithm. The transfer term tr is set to clear the
government budget constraint. This procedure is repeated over multiple combinations of location
of two outer knots, (Inyq,Inyy), and we pick one that achieves the highest value of the objective.
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While it is natural to do so, we choose not to include (Iny;,Inyy) as control variable in the
Nelder-Mead algorithm. We find that the Nelder-Mead algorithm tends to put the outer knots
far away from the range of the income distribution, and the marginal tax rates at the outer knots
(71, Tn) can take a range of values in the optimization scheme. This is because the marginal tax
rates at the outer knots have quantitatively small implication for the welfare.

Performance benchmarking in the model with single-dimensional uncertainty

The Ramsey solution is benchmarked against the true Mirrleesian solution in the one-dimensional
setup. For this computation, the productivity z-space is discretized with 500 points in log-space.

Figure 13 compares Mirrleesian solutions and Ramsey solutions with three knots (N = 3) for
both a rational case (f = o) and a robust case (6 = 100). The broken lines represent the marginal
tax rates based on the Mirrlees solution (Diamond-Saez formula) and solid lines represent the rates
based on the Ramsey solution (Cubic Spline). Blue and orange lines are the solution for the rational
case (0 = o0) and robust case (6 = 100), respectively. The figure shows that the Ramsey solutions
approximate the Mirrlees solutions well in terms of the overall shape of the marginal tax schedule,
except for low income earners. It is also noteworthy that both approach achieves quite similar level
of welfare. In terms of consumption equivalence, welfare loss from choosing the Ramsey solutions
are roughly 0.05% for the rational and robust cases. We conclude, the Ramsey solution with the
number of knots N = 3 is flexible enough to approximate the Mirrleesian solution with minimal
welfare loss.

iod 6 = oo, DS formula

me= () = 00, Cubic Spline, Welfare Loss = 0.045%
0 = 100, DS formula

0.81 6 = 100, Cubic Spline, Welfare Loss = 0.055%

0.0 —

T T I T
4

Figure 13: Optimal Ramsey tax policy in the economy with one-dimensional heterogeneity
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G Optimal tax schedule under multidimensional uncertainty with the status-
quo tax policy calibrated to the US

In this Appendix, we present the optimal tax schedule under multidimensional misspecification
concerns with the status-quo tax policy T calibrated to the one in the United States.

To approximately capture the level of marginal tax rates on income, we set the status-quo tax
policy T° with an affine function with a constant marginal tax rate of 35%. The disutility shifter ¥
is calculated with the new status-quo tax policy.

Figure 14 shows the result.

0.8
—_— 0, = 0
0.71 0, = 100.0
— 0, =100
061 = g =50
05l — 6 =2
0.4
E ____________________________________
0.3
0.2-
0.1-
0.0
102 10 107t 10 10t 102 1% 10!

Y

Figure 14: Optimal marginal tax schedules for alternative levels of multidimensional misspecifica-
tion concerns. The status quo tax policy is an affine tax function with a constant marginal tax rate
of 35%, T (y) = 0.35.

H Comparison with Lockwood, Sial, and Weinzierl (2021)

In this Appendix, we compare the optimal tax policy in our model with the two-dimensional het-
erogeneity to the one in Lockwood et al. (2021).

Similar to our work, Lockwood et al. (2021) study the optimal income tax scheme when the tax
planner faces uncertainty about the value of the elasticity of taxable income. They show that the
uncertainty generally leads to a more progressive tax schedule with a higher marginal tax rate at
the top, relative to the case without the uncertainty about the ETI. On the contrary, we find that the
optimal tax policy is less progressive and the marginal tax rate at the top is lower when the planner
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has concerns about the misspecification of the right tail of the distribution of the ETI, relative to the
case without concerns about the distributin of the ETL

Those two findings are consistent. While Lockwood et al. (2021) maximize the expected welfare
of the tax planner over the distribution of the ETI, this is equivalent to maximizing the welfare
under the measure of heterogeneous population with different values of the ETI. In our experiment,
Lockwood et al. (2021)’s result with the uncertainty corresponds to the case without concerns (0, =
oo and 6, = o). Therefore, relative to the Lockwood et al. (2021) case without concerns, we find that
the concerns about the ETI leads to lower marginal tax rate at the top. On the other hand, relative
to the case without heterogeneity in the ETI, Lockwood et al. (2021) found that the heterogeneity in
the ETI leads to a higher marginal tax rate at the top.

We numerically confirm this point. Figure 15 shows the optimal tax policy in three models with
and without heterogeneity in the elasticity of taxable income. The optimal marginal tax schedulde
is computed as a cubic spline with three knots. The orange line (“Homogeneous ETI”) represents
the optimal marginal tax schedule in a model without heterogeneity in the elasticity of taxable
income, where the elasticty is assumed to be 0.59, the mean value of the ETI in Fig 9. The blue
line (“Heterogeneous ETI without concerns”) represents the optimal marginal tax schedule in a
model with heterogeneity in the elasticity of taxable income, where the elasticities are distributed
according to Fig 9. The read line (“Heterogeneous ETI with concerns”) is the optimal marginal tax
schedule with the penality parameter 6, = 5. The blue line and the read line are taken from the
main text. The figure confirms that the heterogeneity in the ETI leads to a higher marginal tax rate
at the top (the difference between the orange line and the blue line), while the concerns about the
ETI leads to a lower marginal tax rate at the top (the difference between the blue line and the red
line).
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Figure 15: Commparison of optimal tax policy in models with and without heterogeneity in the
elasticity of taxable income
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