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INTRODUCTION

Large literature on optimal tax design

• theoretical framework: Ramsey (1927), Mirrlees (1971)
• applications: Diamond and Saez (2011), Golosov et al. (2016), Heathcote et al. (2017)

Finding: Optimal tax scheme should be much more progressive than the current U.S. tax system.

Key predictions depend on hard to measure objects

• distribution of earning potentials (labor productivity)
• distribution of preferences (labor supply elasticity)
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THIS PAPER

Optimal tax design acknowledging uncertainty about distribution of individual characteristics

• build on decision theory under ambiguity to model welfare consequences of statistical
uncertainty about type distributions with Mirrlees (1971)

• quantify uncertainty using information from historical data on incomes and elasticities

Key sources of uncertainty

• tails of productivity and preference distribution with scarce information relative to welfare
implications

Main finding

• concerns for uncertainty call for substantially lower tax progressivity for high incomes
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FRAMEWORK



GENERAL FRAMEWORK

A continuum of households indexed with types type s ∼ F(s).

Households choose effort subject to an income tax function T (y) .

A utilitarian government chooses T(y) to maximize social welfare.

• trades off redistributive motives and efficiency
• faces uncertainty about the type distribution F(s)

Next, we will

• start with 1-dimensional uncertainty: productivity distribution
• extend to multidimensional uncertainty: productivity and labor supply elasticity distribution
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HOUSEHOLDS

Given a labor income tax function T(y), household of type z solves

max
c,n

U(c,n; z)

subject to the budget constraint

c = zn︸︷︷︸
y = zn

− T (zn) .

Solution yields indirect utility function U(z; T).
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UNCERTAINTY ABOUT HOUSEHOLD CHARACTERISTICS

The government is concerned that distribution F(z) may be misspecified.

• it considers alternative distributions F̃ (z) that are statistically close to F (z)

A measure of statistical distance is the relative entropy (Kullback–Leibler divergence)

E(F, F̃) =
∫
m (z) logm (z)dF (z)

• m (z) = dF̃(z)
dF(z) is the Radon–Nikodým derivative of F̃ with respect to F
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DECISION MAKING UNDER AMBIGUITY / MISSPECIFICATION

For a given benchmark F and entropy bound κ, the set of statistically close distributions is

F(F, κ) =
{
F̃ : E(F, F̃) ≤ κ

}
• the set F(F, κ) is large and the government does not put a prior on that set

Design a tax function that performs well under any of the distributions in the set F(F, κ).

• Hansen and Sargent (2001a,b), and the broader literature on decision-making under ambiguity
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GOVERNMENT PROBLEM

A

robust

utilitarian government solves the

max-min

problem

max
T

∫
ψ (z)U(z; T) dF (z) + V(G)

subject to

∫
T(Y (z; T)) dF (z) = G.

• ψ (z) is a Pareto/Negishi weighting function, normalized to E [ψ] = 1
• net tax revenue T(Y (z; T)) redistributes and pays for government expenditures G
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GOVERNMENT PROBLEM

A robust utilitarian government solves the max-min problem

max
T

min
F̃∈F

∫
ψ (z)U(z; T) dF̃ (z) + V(G)

subject to

∫
T(Y (z; T)) dF̃ (z) = G.

• max-min: given tax function T, adverse nature searches for the ‘worst-case’ distribution in F

• optimal tax function performs well relative to any distribution in F
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GOVERNMENT PROBLEM

A robust utilitarian government solves the max-min problem

max
T

min
m:̃F∈F

∫
ψ (z)U(z; T)m (z)dF (z) + V(G)

subject to

∫
T(Y (z; T))m (z)dF (z) = G.

• utilitarian concern: low weight m (z) on households with high contribution to welfare
• budgetary concern: low weight m (z) on households with high contribution to the budget
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GOVERNMENT PROBLEM

A robust utilitarian government solves the max-min problem

min
m:̃F∈F

max
T

∫
ψ (z)U(z; T)m (z)dF (z) + V(G)

subject to

∫
T(Y (z; T))m (z)dF (z) = G.

• the minimax theorem allows switching the order of optimization
• inner problem can be approached using tools from the Mirrleesian literature
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THEORETICAL ANALYSIS



UNCERTAIN PRODUCTIVITY DISTRIBUTION

The (inner) optimal tax problem can be cast as a mechanism design problem (Mirrlees (1971))

• revelation principle allows to focus on direct mechanisms
• workers provide a report z′ of their type z
• government offers a menu of allocations (c (z′) , y (z′)) that incentivizes truthtelling, z′ = z
• implied tax function T (y (z)) = y (z)− c (z)
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MECHANISM DESIGN APPROACH

The robust government solves

min
m:̃F∈F

max
c,y

∫
ψ (z)U

(
c (z) , y (z)z

)
m (z)dF (z) + V (G)

subject to incentive compatibility constraints

U
(
c (z) , y (z)z

)
≥ U

(
c
(
z′
)
,
y (z′)
z

)
∀z, z′

and the government budget constraint∫
(y (z)− c (z))m (z)dF (z) = G.
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EX-POST BAYESIAN INTERPRETATION

Fixing m (z) (fixing a distribution F̃ (z)), the problem is as in Mirrlees (1971), now under F̃ (z).

• ex-post Bayesian interpretation of F̃ (z)

Incentive-compatibility constraints are type-by-type, do not depend on the distribution.

• misspecification concerns do not alter incentive compatibility

Optimal allocation and the minimizing ‘worst-case’ distribution determined jointly.
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WORST-CASE DISTRIBUTION

The worst-case distribution is given by f̃ (z) = m (z) f (z) with

m (z) = m̄ exp

(
− 1
θ (κ)

[ψ (z)U (z) + µT (y (z))]
)

• utilitarian concern: lower weight on households with high welfare contribution ψ (z)U (z)
• budgetary concern: lower weight on households who generate high tax revenue T (y (z))

11/52



CHARACTERIZATION

Theoretical characterization of top marginal tax rates in a simple (but informative) case.

• quasilinear household utility

U (c,n) = c− n1+γ

1+ γ

• ‘Rawlsian’ welfare weights: ψ(z) = 0 in the right tail
• benchmark distribution F(z) Pareto with shape parameter α
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OPTIMAL TAX SCHEDULE

Optimal marginal tax schedule is given by a modified Diamond (1998)–Saez (2001) formula

T′ (y (z))
1− T′ (y (z)) = (1+ γ)︸ ︷︷ ︸

(A)

1− F̃ (z)
z̃f (z)︸ ︷︷ ︸
(B)

• (A): adverse effect of taxes on labor supply via labor supply elasticity
• (B): tradeoff between labor supply distortion at z and revenue from taxing types above z
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OPTIMAL TAX SCHEDULE

Without misspecification concerns (κ = 0)

T′ (y (z))
1− T′ (y (z)) = (1+ γ)︸ ︷︷ ︸

(A)

1− F (z)
zf (z)︸ ︷︷ ︸
(B)

= (1+ γ)
1
α

• taxes at the top are nonzero and quantitatively possibly large: γ = 2, α = 2 =⇒ T′(y) → 60%
• intuition: the tax revenue from types above z outweighs the labor supply distortion at z
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OPTIMAL TAX SCHEDULE

With misspecification concerns (κ > 0)

T′ (y (z))
1− T′ (y (z)) = (1+ γ)︸ ︷︷ ︸

(A)

1− F̃ (z)
z̃f (z)︸ ︷︷ ︸
(B)

• household at a given z less consequential from a budget perspective than household above z
• f̃ (z) tilted less than 1− F̃ (z) =⇒ (B) decreases
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OPTIMAL TAX SCHEDULE UNDER MISSPECIFICATION CONCERNS

With misspecification concerns, the tax schedule and distribution F̃ (z) are determined jointly.

T′ (y (z))
1− T′ (y (z)) = (1+ γ)

1− F̃ (z)
z̃f (z)

T (y (z)) = T (y (z)) +
∫ y(z)

y(z)
T′ (η)dη

m (z) = m̄ exp
(
−µ
θ
T (y (z))

)

• when T′ (y (z)) decays more slowly, T (y (z)) grows faster
• the distortion m (z) thins out the density at the top faster
• the optimal tax formula then implies a faster decay rate of T′ (y (z))

The optimal tax schedule is a fixed point of this argument.
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OPTIMAL TAX RATES AT THE TOP

Theorem 1.1
Assume preferences are quasilinear and κ > 0. Then the marginal tax rate vanishes to zero at the
top:

lim
z→∞

T′ (y (z)) = 0. (1.1)

Moreover, if the right tail of z is Pareto distributed with shape parameter α, then

lim
y→∞

d log T′ (y)
d log y = − 1

2 . (1.2)

• the limit and rate of decay are independent of other parameters of the model
• results hold for arbitrarily small amounts of uncertainty κ
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DIFFERENTIAL EQUATION FOR THE MARGINAL TAX

Assume that the benchmark type distribution F (z) is Pareto with shape parameter α.

• combining equations that characterize the fixed point argument and differentiating yields

− T′′ (y) y
1− T′ (y) = −

[
2− 1+ γ + α

1+ γ
T′ (y)

]−1 [
µ

θ

[
T′ (y)

]2 y− γ + γ
1+ γ + α

1+ γ
T′ (y)

]
(1.3)

We thus obtain the differential equation

T′′ (y) = h
(
y, T′ (y)

)
. (1.4)

• unique strictly positive solution that satisfies the transversality condition

lim
y→∞

T′ (y) = 0
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GENERALIZATIONS: BEYOND THE QUASILINEAR RAWLSIAN CASE

Results carry over to

• general (isoelastic) separable utility

U (c,n) = c1−ρ

1− ρ
− χ

n1+γ

1+ γ

• general welfare weights

For example, for a utilitarian planner with ψ (z) ≡ 1 and isoelastic utility, we have

lim
y→∞

T′ (y) = 0,

lim
y→∞

d log T′ (y)
d log y = min

(
ρ− 1,− 1

2

)
.

• the distortion
m (z) = m̄ exp

(
− 1
θ
[U (z) + µT (y (z))]

)
may be dominated by the utilitarian concern when utility from consumption is close to linear
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GENERALIZATIONS: BEYOND ENTROPY

Results carry over to a general class of power divergence functions of Cressie and Read (1984).

Eη

(
F, F̃

)
= E [ϕη (m)] = E

[
m1+η − 1
η (1+ η)

]
.

For example,

• when η ≥ 0, then the marginal tax rate at the top satisfies

lim
y→∞

T′ (y) = 0

• when η < 0, then the marginal tax rate at the top is given by

lim
y→∞

T′ (y) = τη =
1+ γ

1+ γ + α̃
with α̃ = α− 1+ γ

γ

1
η
> α
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QUANTITATIVE APPLICATION



CALIBRATION

Preferences and technology

• isoelastic preferences: U (c,n) = c1−ρ
1−ρ

− υ n1+γ
1+γ

with ρ = 1, υ = 1, γ = 2
• government spending V (G) = v̄G

Benchmark distribution F

• log z has exponentially modified Gaussian (EMG) distribution (Heathcote and Tsujiyama (2021))
• left tail of z distribution is lognormal (parameters µ, σ)
• right tail approximately Pareto (parameter α)

Entropy bound κ

• use time-series variation in observed income distributions (World Income Database)
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QUANTIFYING UNCERTAINTY IN INCOME DISTRIBUTIONS

1. For each year t, we fit the EMG distribution to obtain parameters (µt, σt, αt).
2. For each 5-year window {t, . . . , t+ 4}, we construct F (Ft, κt) as the set that

• includes all fitted EGM distributions from years {t, . . . , t+ 4}
• has the smallest entropy radius κt

3. Baseline calibration uses the lowest κ ∈ {κt}.

The set F (Ft, κt) is rich:

• it contains all distributions that are close to Ft
• not only the parameterized EGM family
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QUANTIFYING UNCERTAINTY IN INCOME DISTRIBUTIONS
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OPTIMAL MARGINAL TAX SCHEDULES
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OPTIMAL MARGINAL TAX SCHEDULES
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OPTIMAL MARGINAL TAX SCHEDULES
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OPTIMAL MARGINAL TAX SCHEDULES

10−3 10−2 10−1 100 101 102 103 104
0

0.2

0.4

0.6

0.8

average income

optimal tax rate in the
benchmark model peaks
at 57.5% for 7.5 times aver-
age income (≈ $375k)

y

T′
(y
)

κ = 0 (Diamond–Saez, no misspecification concerns)
κ > 0 (baseline calibration)

23/52



OPTIMAL MARGINAL TAX SCHEDULES
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OPTIMAL MARGINAL TAX SCHEDULES
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ELASTICITY OF MARGINAL TAX RATE
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INSURANCE PROVISION AND BUDGETARY CONCERNS

The worst-case density is characterized by the distortion

m (z) = m̄ exp

(
− 1
θ
[U (z) + µT (y (z))]

)
Left tail of the type distribution

• without redistribution, we would have limz→0 U (z) = −∞, and limz→0m (z) = ∞

• redistributive transfers bound U (z) from below, and so m (z) is bounded above

Right tail of the type distribution

• dominated by budgetary concerns
• since limz→∞ T (y (z)) = ∞, we also have limz→∞m (z) = 0
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WORST-CASE DISTRIBUTIONS
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• worst-case distributions f̃(z) for alternative levels of misspecification concerns given by θ

• κ = 0 corresponds to the rational benchmark for which f̃(z) = f(z)
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OPTIMAL ALLOCATIONS

10−3 10−2 10−1 100 101 102 103 104
0

0.5

1

z

n(
z)

κ = 0
κ > 0

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100
101
102
103
104

y

c(
y)

27/52



MOMENTS UNDER BENCHMARK AND WORST-CASE DISTRIBUTIONS

moments \ κ 0 κbaseline κmedian

E [z] 1.000 1.000 1.000
Ẽ [z] 1.000 0.944 0.914
E [y] 0.823 0.841 0.850
Ẽ [y] 0.823 0.787 0.768
µ 1.215 1.270 1.303
T0 −0.315 −0.289 −0.276
maxy T′(y) (%) 71.4 57.5 54.3
argmaxy T′(y) ∞ 6.305 4.856
E [T] 0.000 0.027 0.039
Ẽ [T] 0.000 0.000 0.000

Effects of an increase in uncertainty (↗ κ)

• more pessimistic subjective distribution of
productivity

(
↘ Ẽ [z]

)
• lower taxes prop up labor supply (↗ E [y])
• marginal social value of public funds
increases, lump-sum transfer T0 somewhat
decreases

• progressivity of the tax system declines
• under the benchmark distribution, the tax
scheme generates additional resources E [T]
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MULTIDIMENSIONAL TYPE DISTRIBUTION



UNCERTAIN PRODUCTIVITY AND LABOR SUPPLY ELASTICITY DISTRIBUTION

Large disagreement over labor supply elasticities

• estimates vary across population studied, econometric approach etc.

Allow for uncertainty over a multidimensional type distribution

• joint distribution of productivity and labor supply elasticity

Next:

• incorporate multidimensional uncertainty using a modified penalty function
• calibrate using auxiliary data on Frisch elasticities
• analyze robust optimal tax policy in this setting
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MODIFIED PENALTY

Let f(z, γ) be the joint distribution of productivity z and the inverse Frisch elasticity γ

• factor the joint distributions f (γ, z) = fz (z) fγ|z (γ|z) and f̃ (γ, z) = f̃z (z) f̃γ|z (γ|z)

Proposed penalty: Let θγ , θz be two scalars

Penalty
(
f, f̃|θγ , θz

)
≡ θγ

∫
E
(
fγ|z (· | z) , f̃γ|z (· | z)

)
︸ ︷︷ ︸

Entropy of cond. dist of γ

m (z) fz (z)dz

+ θz E
(
fz, f̃z

)
︸ ︷︷ ︸

Entropy of marg. of z

Properties

• θγ = θz = θ implies Penalty
(
f, f̃

)
= θE

(
f, f̃

)
• θγ → ∞ recovers a version of the one-dimensional uncertainty about labor productivity
• θz → ∞ implies m (z) = 1
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MULTIDIMENSIONAL ROBUST TAXATION

The min problem is reformulated as

min
m

∫
U(z, γ; T)m (γ, z) f (γ, z)d (γ, z) + V (G) + Penalty

(
f, f̃|θγ , θz

)
s.t.

∫
m (z) fz (z)dz = 1∫
m (γ | z) fγ|z (γ | z)dγ = 1

where U (z, γ; T) is the indirect utility for type s = (γ, z) given a proposed tax function T. The

robust planner chooses T,G subject to budget balance as before
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HOURS VS ELASTICITY

Consider separable CES preferences from before: c1−ρ1−ρ
− ψ n1+γ

1+γ

Parameter γ affects both the level and elasticity of labor supply

Want to isolate uncertainty about the response of hours to a change in taxes

• consider a tax reform ∆T as a change from some status quo tax function T0 → T

• for small tax reforms we want small consequences of uncertainty about response to tax
reforms

∆T ≈ 0→ m (γ|z) ≈ 1
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HOURS VS ELASTICITY

Consider separable CES preferences from before: c1−ρ1−ρ
− ψ n1+γ

1+γ

Adjust preferences so that
c1−ρ

1− ρ
−Ψ(γ, z) n

1+γ

1+ γ
−∆(γ, z)

Impose restrictions on Ψ(γ, z) and ∆(γ, z) so that

• when T = T0, the allocation and utility levels are independent of γ given z Ψ (γ, z) and ∆ (γ, z)

Implication: T = T0 would give m(γ|z) = 1
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ECONOMIC MECHANISM: BEST RESPONSE FUNCTIONS

∆Top Tax

∆Top Elasticity

Alter ego’s best response

Government’s best response

The slope of Alter ego’s best response de-
pends on the strength of the wealth effect.

;

γ̃−1 = γ−1, T = T0
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MECHANISM: BEST RESPONSE FUNCTIONS

∆Top Tax

∆Top Elasticity

Alter ego’s best response

Government’s best response

In the worst case, high earners are more
elastic, and the government’s response is
to lower top tax rates.

γ̃−1 = γ−1, T = T0
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APPLICATION

Baseline f (γ, z): Covers elasticities reported in the micro and macro literature

• f (γ | z) ∼ log normal and independent of z
• Eγ = 2, and Q75 (γ)− Q25 (γ) = 3− 1

3

Penalty
(
f, f̃|θγ , θz

)
: Focus on only concerns about elasticities

• θz → ∞

• θγ so that worst case distribution implies high-earning individuals have elasticities in the
range found by Rauh et al.

Restrict T (y) to be in a class of functions Details of the restricted class

• Set T0 to zero (robustness with T0=U.S.)

Calibrate the strength of wealth effect using evidence from lottery winnings ρ = 0.56

• All other parameters are same as before
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RESULTS: CALIBRATION OF θγ
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Ẽ
[γ
|z
] θγ = ∞

θγ = 100

θγ = 10

θγ = 5

θγ = 1
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RESULTS: ROBUST PLANNER LOWERS TOP TAXES
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RESULTS: INCOME DISTRIBUTIONS NOT DISTORTED
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RESULTS: INTUITION

Main finding: Uncertainty about elasticity→ lower top taxes

• Baseline calibration: ∆ top tax rate ≈ -15 p.p

Government worries about raising sufficient revenues

• 1D: not enough high productive people
• 2D: not enough inelastic people among high productive

Endogenously correlation between elasticities and skills

• Baseline: γ ⊥ z and Eγ ≈ 2
• Worse case: γ ̸⊥ z and Ẽγ|z < 2 for high earners

Income distribution mainly driven by skills and not distorted
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MOMENTS UNDER THE BENCHMARK AND WORST-CASE DISTRIBUTIONS

moments \θγ ∞ 100 10 5 1

E [z] 1.00 1.00 1.00 1.00 1.00
Ẽ [z] 1.00 1.00 1.00 1.00 1.00
E [γ] 2.00 2.00 2.00 2.00 2.00
Ẽ [γ] 2.00 2.00 1.99 1.99 1.95
E [γ | z ≥ z̄] 2.00 2.00 2.00 2.00 2.00
Ẽ [γ | z ≥ z̄] 2.00 1.65 0.60 0.33 0.06
E [y] 0.81 0.81 0.82 0.82 0.83
Ẽ [y] 0.81 0.81 0.81 0.81 0.82

µ 1.18 1.18 1.18 1.18 1.18
T0 -0.17 -0.17 -0.17 -0.17 -0.16
E [T] -0.00 0.00 0.00 0.00 0.00
Ẽ [T] -0.00 -0.00 -0.00 -0.00 -0.00
E [T] /E [y] -0.00 0.00 0.00 0.00 0.00
Ẽ [T] /Ẽ [y] -0.00 -0.00 -0.00 -0.00 -0.00

z̄ is minimum z such that E [y | z] ≥ 100E [y]
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RESULTS: OPTIMAL TAXES, T0 = US
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RESULTS: INCOME DISTRIBUTION T0 = US
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CHOICE FOR Ψ(γ, z) AND ∆(γ, z)

Let C(γ, z|T),N (γ, z|T) be optimal choices for

U(γ, z|T) = max
c,n,y: c≤y−T(y)

c1−ρ

1− ρ
−Ψ(γ, z) n

1+γ

1+ γ
−∆(γ, z)

Reverse engineer Ψ and ∆

• so that T = T0 is sufficient for optimal choices and indirect utilities to be independent of
curvature on labor supply given productivity

=⇒ incentives to distort conditional distributions γ|z vanish when T→ T0

Illustrate using T0 = 0 (general case in paper)

Proposition 1.2

Let Ψ(γ, z) = ψ̄
ρ+γ
ρ+γ̄ z1+γ−(1+γ̄) γ+ρ

γ̄+ρ and ∆(γ, z) = 1
1+γ̄

(
z1+γ̄
ψ̄

) 1−ρ
γ̄+ρ− 1

1+γ

(
z1+2γ−γ̄

ψ̄

) 1−ρ
γ̄+ρ for some

constants ψ̄, γ̄. If T0 = 0, then for all γ′, γ′′, z we have

C(γ′, z|T0) = C(γ′′, z|T0) N (γ′, z|T0) = N (γ′′, z|T0) U(γ′, z|T0) = U(γ′′, z|T0).
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RESTRICTED CLASS OF T (y)

In the 2D set up, we restrict marginal tax rate T′ (y) =
∑

j cjϕ
j (ln y) where ϕj are cubic polynomials

Parametrize T′ (y) using N knots {(ln yi, τi)}i=1,··· ,N :

• Impose T′ (y) to be constant for (0, y1] and [yN,∞)

• Require T′ (y) is smooth at y = yi (i = 2, · · · ,N− 1) and differentiable at y = y1 and yN

T′ (y) =


τ1 (y < y1)
CubicSpline

(
ln y; {(ln yi, τi)}i=1,··· ,N

)
(y1 ≤ y ≤ yN)

τN (yN < y) .

Optimal T is obtained maximizing welfare given this class of functions and budget balance
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EXAMPLE OF T′ (y) WITH CUBIC SPLINE
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HOW TO PICK N?

Large N introduces numerical instability

• welfare is not guaranteed to well-behaved with respect to underlying parameters

Small N introduces welfare losses

• insufficient flexibility might limit the welfare gains from optimal taxes

Find the smallest N so that welfare gains are “sufficiently close” to the Mirrlees solution

• define “sufficiently close” using a consumption-equivalent welfare gains threshold

• implement in cases where the full Mirrlees solution is feasible
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BENCHMARKING CUBIC SPLINES IN 1D

Well-known that multidimensional screening problems are difficult to characterize

• for e.g., first-order approach is not guaranteed to work

Use various parametrizations of 1D setup as a laboratory

• figure out the appropriate N for the multidimensional case

• test the cubic spline method

Finding: cubic splines with N = 3 do a good job in capturing shape and welfare gains

48/52



CUBIC SPLINE APPROXIMATES DIAMOND-SAEZ SOLUTION IN 1D
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θ = ∞, Cubic Spline, Welfare Loss = 0.045%

θ = 100, DS formula

θ = 100, Cubic Spline, Welfare Loss = 0.055%

• Welfare loss relative to the Diamond-Saez solution is approximately 0.05% of consumption 49/52



CALIBRATION OF ρ

Curvature parameter ρ affects the size of income effect

• Workers’ response to tax reform depends on the size of income effect

Use estimates from the lottery study in the US by Golosov, Graber, Mogstad, Novgorodsky (2023)

Under an affine tax T (y) = τy− tr, income effect is measured by

dy
dtr = − 1

γ
ρ

(
1− τ + tr

y

)
+ 1− τ

Golosov et al estimate: dy
dtr ≈ −0.367 for a lottery winner

The rest is calibrated to high income earners in the US

• top marginal tax rate: τ = 0.40,
• transfer is small relative to income for high income earners: tr/y ≈ 0
• use the baseline value of labor supply elasticity: γ = 2

=⇒ ρ = 0.56
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CONCLUSION



CONCLUSION

Acknowledging distributional uncertainty points toward lower progressivity.

• especially at the top, where budgetary concerns (per household) are most severe
• the left tail is well insured, leading to only modest concerns, unless overall uncertainty is
substantial

• insights robust to variation in underlying distributions and preferences

Magnitude of misspecification concerns can be disciplined using

• administrative data: time-series variability in income distributions
• data on incomes and elasticity: reported elasticities of high-earning individuals

51/52



EXTENSIONS AND FOLLOW-UP WORK

If the benchmark distribution is ex-post correct, the optimal policy generates a surplus.

• dynamic debt management model

State-dependent misspecification concerns expressed by θ (z).

• administrative data and surveys are differentially informative about parts of the type
distribution

Other applications with substantial uncertainty about type distribution.

• wealth taxation

52/52



BIBLIOGRAPHY



LITERATURE I

Cressie, Noel and Timothy R. C. Read (1984) “Multinomial Goodness-of-Fit Tests,” Journal of the Royal Statistical
Society, Series B (Methodological), 46 (3), 440–464.

Diamond, Peter A. (1998) “Optimal Income Taxation: An Example with a U-Shaped Pattern of Optimal Marginal
Tax Rates,” American Economic Review, 88 (1), 83–95.

Diamond, Peter A. and Emmanuel Saez (2011) “The Case for a Progressive Tax: From Basic Research to Policy
Recommendations,” Journal of Economic Perspectives, 25 (4), 165–190.

Golosov, Mikhail, Maxim Troshkin, and Aleh Tsyvinski (2016) “Redistribution and Social Insurance,” American
Economic Review, 106 (2), 359–86, 10.1257/aer.20111550.

Hansen, Lars Peter and Thomas J. Sargent (2001a) “Acknowledging Misspecification in Macroeconomic Theory,”
Review of Economic Dynamics, 4 (3), 519–535.

(2001b) “Robust Control and Model Uncertainty,” American Economic Review, 91 (2), 60–66.
Heathcote, Jonathan, Kjetil Storesletten, and Giovanni L. Violante (2017) “Optimal Tax Progressivity: An Analytical
Framework,” Quarterly Journal of Economics, 132 (4), 1693–1754.

Heathcote, Jonathan and Hitoshi Tsujiyama (2021) “Optimal Income Taxation: Mirrlees Meets Ramsey,” Journal of
Political Economy, 129 (11), 3141–3184.

http://dx.doi.org/10.1257/aer.20111550


LITERATURE II

Mirrlees, James A. (1971) “An Exploration in the Theory of Optimum Income Taxation,” Review of Economic
Studies, 38 (2), 175–208.

Ramsey, Frank P. (1927) “A Contribution to the Theory of Taxation,” Economic Journal, 37 (145), 47–61.

Saez, Emmanuel (2001) “Using Elasticities to Derive Optimal Income Tax Rates,” Review of Economic Studies, 68
(1), 205–229.


	Framework
	Framework

	Theoretical analysis
	Theoretical analysis

	Quantitative application
	Quantitative application

	Multidimensional type distribution
	Multidimensional type distribution

	Conclusion
	Conclusion

	Appendix
	Bibliography
	Bibliography



