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INTRODUCTION

Large literature on optimal tax design

• theory: Ramsey (1927), Mirrlees (1971)
• applications: Diamond and Saez (2011), Golosov et al. (2016), Heathcote et al. (2017)

Key predictions depend on hard to measure objects

• distribution of earning potentials (labor productivity)
• distribution of preferences (labor supply elasticity)

Some information on these objects are available from administrative and survey data.
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THIS PAPER

Optimal tax design acknowledging uncertainty about distribution of individual characteristics

• combine robust control approach of Hansen and Sargent (2001a,b) to model welfare
consequences of statistical uncertainty about type distributions with Mirrlees (1971)

• quantify uncertainty using information from administrative and survey data

Key sources of uncertainty

• tails of the productivity distribution with scarce information relative to their welfare
implications

• correlation of productivity and labor supply elasticity
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FRAMEWORK



GENERAL FRAMEWORK

A continuum of households indexed with type s ∼ F(s).

• type may index productivity z, labor supply elasticity γ, …

Households choose labor supply subject to an income tax function T (y) .

A utilitarian government chooses T(y) to maximize social welfare.

• trades off redistributive motives and efficiency
• faces uncertainty about the type distribution F(s)
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HOUSEHOLDS

Given a labor income tax function T(y), household of type s solves

max
c,n

U(c,n; s)

subject to the budget constraint

c = z (s)n︸ ︷︷ ︸
y = z(s)n

− T (z (s)n) .

Indirect utility function U(s; T) and decision rules C (s; T), N (s; T), Y (s; T).
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GOVERNMENT

Without uncertainty concerns, the utilitarian government is endowed with welfare function

E [ψU (T)] =
∫
ψ (s)U(s; T)dF (s)

• ψ (s) is a Pareto/Negishi weighting function, normalized to E [ψ] = 1

The government solves
max
T

∫
ψ (s)U(s; T)dF (s)

subject to the government budget constraint∫
T(Y (s; T))dF (s) = B.
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UNCERTAINTY ABOUT HOUSEHOLD CHARACTERISTICS

The government is concerned that distribution F(s) may be misspecified.

• it considers alternative distributions F̃ (s) that are statistically close to F (s)

A measure of statistical closeness is the relative entropy (Kullback–Leibler divergence)

E(F, F̃) =
∫
m (s) logm (s)dF (s)

• m (s) = dF̃(s)
dF(s) be the Radon–Nikodým derivative of F̃ with respect to F

For a given benchmark F and entropy bound κ, the set of statistically close distributions is

F(F, κ) =
{
F̃ : E(F, F̃) ≤ κ

}
• the set F(F, κ) is large and the government does not put a prior on that set
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ROBUST GOVERNMENT

A robust utilitarian government solves the max-min problem

max
T

min
F̃∈F

∫
ψ (s)U(s; T)dF̃ (s)

subject to ∫
T(Y (s; T))dF̃ (s) = B.

• utilitarian concern: low weight m (s) on households with high contribution to welfare
• budgetary concern: low weight m (s) on households with high contribution to the budget
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ROBUST GOVERNMENT: LAGRANGIAN FORMULATION

It is easier to work with the Lagrangian formulation.

• let θ be the Lagrange multiplier associated with the entropy constraint

Reformulate the robust government problem as

max
T

min
m>0
E[m]=1

∫
ψ (s)U(s; T)m (s)dF (s) + θ

∫
m (s) logm (s)dF (s)

subject to ∫
T(Y (s; T))m (s)dF (s) = B.
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THEORETICAL ANALYSIS: SCALAR CASE



UNCERTAIN PRODUCTIVITY DISTRIBUTION

We now restrict attention to a scalar type s = z.

• typical case studied in much of the literature

The optimal tax problem can be cast as a mechanism design problem (Mirrlees (1971))

• revelation principle allows to focus on direct mechanisms
• workers provide a report z′ of their type z
• government offers a menu of allocations (c (z′) , y (z′)) that incentivizes truthtelling, z′ = z
• implied tax function T (y (z)) = y (z)− c (z)
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MECHANISM DESIGN APPROACH

The robust government solves

max
c,y

min
m>0
E[m]=1

∫
ψ (z)U

(
c (z) , y (z)z

)
m (z)dF (z) + θ

∫
m (z) logm (z)dF (z)

subject to incentive compatibility constraints

U
(
c (z) , y (z)z

)
≥ U

(
c
(
z′
)
,
y (z′)
z

)
∀z, z′

and the government budget constraint∫
(y (z)− c (z))m (z)dF (z) = B.
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EX-POST BAYESIAN INTERPRETATION

Fixing m (z) (fixing a distribution F̃ (z)), the problem is as in Mirrlees (1971), now under F̃ (z).

• ex-post Bayesian interpretation of F̃ (z) (min and max can be interchanged)

Incentive-compatibility constraints are type-by-type, do not depend on the distribution.

• misspecification concerns do not alter incentive compatibility

Optimal allocation and the minimizing ‘worst-case’ distribution determined jointly.
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WORST-CASE DISTRIBUTION

The worst-case distribution is given by f̃ (z) = m (z) f (z) with

m (z) = m̄ exp

(
− 1
θ
[ψ (z)U (z) + µT (y (z))]

)
• utilitarian concern: lower weight on households with high welfare contribution ψ (z)U (z)
• budgetary concern: lower weight on households who generate high tax revenue T (y (z))
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CHARACTERIZATION

We first focus on the theoretical characterization of top marginal tax rates.

• here, we for simplicity assume quasilinear utility

U (c,n) = c− n1+γ

1+ γ

• insights carry over to general separable preferences

We then provide a quantitative evaluation.

• concave utility, type distribution calibrated to data
• discipline the amount of uncertainty the planner faces
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OPTIMAL TAX SCHEDULE

Optimal marginal tax schedule is given by the Diamond (1998)–Saez (2001) ‘ABC’ formula

T′ (y (z))
1− T′ (y (z)) = (1+ γ)︸ ︷︷ ︸

(A)

Ψ̃ (z)− F̃ (z)
1− F̃ (z)︸ ︷︷ ︸

(B)

1− F̃ (z)
z̃f (z)︸ ︷︷ ︸
(C)

.

• (A): adverse effect of taxes on labor supply via labor supply elasticity
• (B): desire to redistribute

Ψ̃ (z) =
∫ z ψ (ζ) f̃ (ζ)∫

ψ (ξ) f̃ (ξ)dξ
dζ

• (C): tradeoff between labor supply distortion at z and revenue from taxing types above z
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PROTOTYPICAL EXAMPLE

Assume planner puts zero welfare weight on top households

• ψ (z) = 0 for z ≥ ẑ where ẑ is some threshold

Benchmark distribution in the tail above ẑ is Pareto with shape parameter α

• then (1− F (z)) / (zf (z)) = α−1

Without misspecification concerns, the tax formula for z ≥ ẑ simplifies to

T′ (y (z))
1− T′ (y (z)) =

1+ γ

α
.

• with a fat-tailed type distribution, taxes at the top are nonzero and quantitatively possibly large
• intuition: the tax revenue from types above z outweighs the labor supply distortion at z
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MISSPECIFICATION CONCERNS

With misspecification concerns, the tax schedule and distribution F̃ (z) are determined jointly.

T′ (y (z))
1− T′ (y (z)) = (1+ γ)

1− F̃ (z)
z̃f (z)

T (y (z)) = T (y (z)) +
∫ y(z)

y(z)
T′ (η)dη

m (z) = m̄ exp
(
−µ
θ
T (y (z))

)
• when T′ (y (z)) decays to zero faster, T (y (z)) grows more slowly
• the distortion m (z) thins out the density at the top more gradually
• the optimal tax formula then implies a slower decay rate of T′ (y (z))

The optimal tax schedule is a fixed point of this argument.
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OPTIMAL TAX RATES AT THE TOP

Theorem 1.1
Assume preferences are quasilinear and θ <∞. Then the marginal tax rate vanishes to zero at the
top:

lim
z→∞

T′ (y (z)) = 0. (1.1)

Moreover, if the right tail of z is Pareto distributed with shape parameter α, then

lim
y→∞

d log T′ (y)
d log y = − 1

2 . (1.2)

• if (1.1) were not true, then T (y (z)) could be bounded by linear growth, and

f̃ (z) = m (z) f (z) = m̄ exp
(
−µ
θ
T (y (z))

)
f (z)

has a thin right tail
• (1.2) pins down the shape of T′ (y) that solves the fixed point argument
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DIFFERENTIAL EQUATION FOR THE MARGINAL TAX

Assume that the benchmark type distribution F (z) is Pareto with shape parameter α.

• combining equations that characterize the fixed point argument and differentiating yields

− T′′ (y) y
1− T′ (y) = −

[
2− 1+ γ + α

1+ γ
T′ (y)

]−1 [
µ

θ

[
T′ (y)

]2 y− γ + γ
1+ γ + α

1+ γ
T′ (y)

]
(1.3)

We thus obtain the differential equation

T′′ (y) = h
(
y, T′ (y)

)
. (1.4)

• unique strictly positive solution that satisfies the transversality condition

lim
y→∞

T′ (y) = 0
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GENERALIZATIONS: BEYOND THE QUASILINEAR RAWLSIAN CASE

Results carry over to

• general (isoelastic) separable utility

U (c,n) = c1−ρ

1− ρ
− χ

n1+γ

1+ γ

• general welfare weights

For example, for a utilitarian planner with ψ (z) ≡ 1 and isoelastic utility, we have

lim
y→∞

T′ (y) = 0,

lim
y→∞

d log T′ (y)
d log y = min

(
ρ− 1,− 1

2

)
.

• the distortion
m (z) = m̄ exp

(
− 1
θ
[U (z) + µT (y (z))]

)
may be dominated by the utilitarian concern when utility from consumption is close to linear
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GENERALIZATIONS: BEYOND ENTROPY

Results carry over to a general class of power divergence functions of Cressie and Read (1984).

Eη

(
F, F̃
)
= E [ϕη (m)] = E

[
m1+η − 1
η (1+ η)

]
.

For example,

• when η ≥ 0, then the marginal tax rate at the top satisfies

lim
y→∞

T′ (y) = 0

• when η < 0, then the marginal tax rate at the top is given by

lim
y→∞

T′ (y) = τη =
1+ γ

1+ γ + α̃
with α̃ = α− 1+ γ

γ

1
η
> α
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QUANTITATIVE APPLICATION



CALIBRATION

Preferences and technology

• isoelastic preferences: U (c,n) = c1−ρ

1−ρ
− χ n1+γ

1+γ
with ρ = 1, χ = 1, γ = 2

• government spending B = 0

Benchmark distribution F

• log z has exponentially modified Gaussian (EGM) distribution (Heathcote and Tsujiyama (2021))
• left tail of z distribution is lognormal (parameters µ, σ)
• right tail approximately Pareto (parameter α)

Entropy bound κ

• use time-series variation in observed income distributions (World Income Database)
• alternative: use survey data and detection error probabilites
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QUANTIFYING UNCERTAINTY IN INCOME DISTRIBUTIONS
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MAPPING FROM ENTROPY TO θ

0 5 10 15 20 25 30 35 40 45 500

0.002

0.004

0.006

0.008

5-year minimum

5-year maximum

5-year median

penalty parameter θ

en
tro
py

E

24/43



ALTERNATIVE APPROACH: USE SURVEY DATA AND DETECTION ERROR PROBABILITIES

We utilize the concept of detection error probability from Anderson et al. (2003).

• measures how distinguishable are f̃ (z) and f (z) using a given finite sample of data of size I
• probability that a sample drawn from f (z) is favored by the likelihood of f̃ (z), and vice versa

Calibrate the detection error d̄ to sample sizes in available surveys.

• Survey of Consumer Finances I ≈ 3, 500.
• pick θ to achieve detection error probability d̄ = 10%

Details on DEPs
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OPTIMAL MARGINAL TAX SCHEDULES
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• without misspecification concerns, marginal tax rate converges to 71.4% (dashed line)
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ELASTICITY OF MARGINAL TAX RATE
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WORST-CASE DISTRIBUTIONS
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• worst-case distributions f̃(z) for alternative levels of misspecification concerns given by θ
• θ = ∞ corresponds to the rational benchmark for which f̃(z) = f(z)
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INSURANCE PROVISION AND BUDGETARY CONCERNS

The worst-case density is characterized by the distortion

m (z) = m̄ exp

(
− 1
θ
[U (z) + µT (y (z))]

)
Right tail of the type distribution

• dominated by budgetary concerns since ρ > 1
2

• since limz→∞ T (y (z)) = ∞, we also have limz→∞m (z) = 0

Left tail of the type distribution

• without redistribution, we would have limz→0 U (z) = −∞, and limz→0m (z) = ∞

• but redistributive transfers bound U (z) from below, and so m (z) is bounded above
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OPTIMAL ALLOCATIONS
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WORST-CASE DISTORTION
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MOMENTS UNDER BENCHMARK AND WORST-CASE DISTRIBUTIONS

moments \ θ ∞ 100 20 10 1
E [z] 1.000 1.000 1.000 1.000 1.000
Ẽ [z] 1.000 0.986 0.951 0.918 0.657
E [y] 0.824 0.828 0.838 0.848 0.918
Ẽ [y] 0.824 0.815 0.792 0.770 0.579
µ 1.220 1.229 1.261 1.297 1.726
T0 −0.311 −0.307 −0.292 −0.278 −0.178
maxy T′(y) (%) 71.4 64.5 58.6 55.0 35.2
argmaxy T′(y) ∞ 15.541 6.955 4.609 1.992
E [T] 0.000 0.008 0.023 0.037 0.110
Ẽ [T] 0.000 0.000 0.000 0.000 0.000
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MULTIDIMENSIONAL TYPE DISTRIBUTION



UNCERTAIN PRODUCTIVITY AND LABOR SUPPLY ELASTICITY DISTRIBUTION

We now incorporate uncertainty about joint type distribution s = (z, γ).

• productivity z, labor supply elasticity γ−1

We also consider different sources of information on the type distribution.

1. Data on the joint distribution of s = (z, γ).

– for example, SCF with personal characteristics

2. Data on the marginal distribution of income Y
(
s; TUS

)
– for example, income data from a tax authority
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TWO LIKELIHOOD RATIOS

The joint type distributions f (z, γ) and f̃ (z, γ) have likelihood ratio

m(z, γ) = f̃ (z, γ)
f (z, γ) .

Given tax function T (y), type distributions imply income distributions

fy(y; T) =
∫
f (z, γ) ∂

∂yZ (y, γ; T)dγ f̃y(y; T) =
∫
f̃ (z, γ) ∂

∂yZ (y, γ; T)dγ

• Z (y, γ; T) is the inverse to the income function Y (z, γ; T).

Income distributions fy (y; T) and f̃y (y; T) have likelihood ratio

my(y; T) = f̃y (y; T)
fy (y; T) .
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TWO ENTROPIES

Entropy penalty for deviations from the joint distribution

θ

∫
m (z, γ) logm (z, γ)dF (z, γ) .

Entropy penalty for deviations from the income distribution

θy
∫
my
(
y; TUS

)
logmy

(
y; TUS

)
dF
(
y; TUS

)

• plausible distributions f̃ (z, γ) should generate plausible distributions f̃y
(
y; TUS

)
… under the existing tax code TUS (y)

Penalty parameters θ and θy calibrated to survey and administrative data.

• perfect knowledge of fy
(
y; TUS

)
still preserves uncertainty about f (z, γ)
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ROBUST GOVERNMENT PROBLEM

Robust government now solves

max
T

min
m>0
E[m]=1

∫
ψ (s)U(s; T)m (s)dF (s)+θ

∫
m (s) logm (s)dF (s)+θy

∫
my
(
y; TUS

)
logmy

(
y; TUS

)
dF
(
y; TUS

)

subject to ∫
T(Y (s; T))m (s)dF (s) = B.

We restrict attention to parameterized tax functions

T (y) = −τ0 + y− τ1y1−τ2

• Heathcote et al. (2017), Heathcote and Tsujiyama (2021)
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CALIBRATION

Preferences

• ρ = 1, χ = 1, γ = 2

Type distribution

• z and γ independent under the benchmark distribution
• log z has exponentially modified Gaussian (EGM) distribution
• γ ∼ U [0.25, 3.75], implying E [γ] = 2

Other parameters

• B = 0
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MARGINAL DISTRIBUTION OF z
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MARGINAL DISTRIBUTION OF γ
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JOINT DISTRIBUTION OF z, γ
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OPTIMAL TAX PROGRESSIVITY

Reducing model misspecification concerns (higher θ and θy) increases optimal tax progressivity τ2.

θ \ θy 0 10 100 500 1000 5000 10000 50000
1 0.200 0.342 0.353 0.358 0.365 0.367 0.368
10 0.350 0.393 0.398 0.398 0.400 0.400 0.401
100 0.399 0.400 0.403 0.406 0.407 0.407 0.408 0.409
1000 0.408 0.408 0.409 0.409 0.409 0.409 0.409 0.409
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CONCLUSION



CONCLUSION

Acknowledging distributional uncertainty points toward lower progressivity.

• especially at the top, where budgetary concerns (per household) are most severe
• the left tail is well insured, leading to only modest concerns, unless overall uncertainty is
substantial

• insights robust to variation in underlying distributions and preferences

Magnitude of misspecification concerns can be disciplined using

• administrative data: time-series variability in income distributions
• survey evidence: detection error probabilities measure distinguishablity in finite samples
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EXTENSIONS AND FOLLOW-UP WORK

If the benchmark distribution is ex-post correct, the optimal policy generates a surplus.

• dynamic debt management model

State-dependent misspecification concerns expressed by θ (z).

• administrative data and surveys are differentially informative about parts of the type
distribution

Multidimensional private type space.

• heterogeneity in productivity and labor supply elasticity increases misspecification concerns

Other applications with substantial uncertainty about type distribution.

• wealth taxation
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ADDITIONAL SLIDES



FIRST-BEST ALLOCATION

If government observed types z and could choose T (z), it would achieve first-best.

• households’ first-order conditions are not distorted by taxes

Un (c,n) = −zUc (c,n)

• taxes and transfers T (z) equalize marginal utility to marginal social value of public funds µ

d
dT (z)U (z; T (z)) = µ

where µ is the Lagrange multiplier on government budget constraint
• budgetary and utilitarian implications of misspecification concerns increase µ

If the tax function can only be conditioned on y, taxation becomes distortionary (Ramsey (1927)).



CALIBRATION OF MISSPECIFICATION CONCERNS

Degree of misspecification concerns is controlled by penalty parameter θ.

• a specific value of θ does not affect the limiting tax at y→ ∞ but has quantitative implications
across the type distribution

We utilize the concept of detection error probability from Anderson et al. (2003).

• measures how distinguishable are f̃ (z) and f (z) using a given finite sample of data of size I



DETECTION ERROR PROBABILITY

Consider a sample
{
zBi
}I
i=1 drawn from the benchmark distribution f (z).

• evaluate probability that
{
zBi
}I
i=1 is assigned a higher likelihood under the worst-case f̃ (z; θ)

P
( I∑

i=1

log f̃
(
zBi ; θ

)
>

I∑
i=1

log f
(
zBi
))

= P
( I∑

i=1

logm
(
zBi ; θ

)
> 0

)

Repeat reciprocally with a sample
{
zAi
}I
i=1 drawn from the alternative worst-case distribution f̃ (z; θ).

The detection error probability is defined as

d (θ, I) = 1
2

(
P
( I∑

i=1

logm
(
zBi ; θ

)
> 0

)
+ P

( I∑
i=1

logm
(
zAi ; θ

)
< 0

))
.

• chance that the likelihood ratio leads to the erroneous conclusion about which of the two
distributions generated the random sample

• construction implies 0 ≤ d (θ, I) ≤ 1
2 .



DETECTION ERROR PROBABILITY

Imagine we have an available draw of size I.

• Survey of Consumer Finances I ≈ 3, 500.

Agree on a plausible level of the detection error probability d̄.

• Hansen and Sargent (2010) argue that d̄ = 0.2 is conservative, we target d̄ = 0.1

Infer θ
(
d̄, I
)
from the implicit equation

d
(
θ
(
d̄, I
)
, I
)
= d̄.

• a more informative survey with a larger I leads to a higher value θ
(
d̄, I
)
for a given fixed d̄

• larger sample sizes achieve the same detection error probabilities for distributions that are
statistically more alike



DETECTION ERROR PROBABILITIES

I 100 500 1000 3500 10000
θ = 100 0.462 0.452 0.437 0.377 0.304
θ = 20 0.432 0.298 0.247 0.090 0.010
θ = 10 0.348 0.172 0.092 0.007 0.000
θ = 1 0.001 0.000 0.000 0.000 0.000

Detection error probabilities for models with alternative choices of misspecification concerns
parameterized by θ, and for alternative sizes of the random samples I.
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